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Abstract

A sequence of positive integers is complete if every positive integer is a sum of
distinct terms. A positive linear recurrence sequence (PLRS) is a sequence defined
by a homogeneous linear recurrence relation with nonnegative coefficients of the form
Hn+1 = c1Hn + · · ·+ cLHn−L+1 and a particular set of initial conditions.

We seek to classify various PLRS’s by completeness. With results on how com-
pleteness is affected by modifying the recurrence coefficients of a PLRS, we completely
characterize completeness of several families of PLRS’s as well as conjecturing criteria
for more general families. Our primary method is applying Brown’s criterion, which
says that an increasing sequence is complete if and only if the first term is 1 and each
subsequent term is bounded above by the sum of all previous terms plus 1. A survey
of these results can be found in the authors’ previous paper [2].

Finally, we adopt previous analytic work on PLRS’s to find a more efficient way to
check completeness. Specifically, the characteristic polynomial of any PLRS has exactly
one positive root; by bounding the size of this root, the majority of sequences may be
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classified as complete or incomplete. Additionally, we show there exists an indetermi-
nate region where the principal root does not reveal any information on completeness.
We have conjectured precise bounds for this region.
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1 Introduction
The Fibonacci numbers are one of the most studied integer sequences. One of their many
interesting properties is that they can be used to construct a unique decomposition for any
positive integer. Zeckendorf proved that every positive integer can be written uniquely as a
sum of non-consecutive elements of the Fibonacci sequence, when indexed with the initial
conditions f1 = 1, f2 = 2 and the recurrence fn+1 = fn + fn−1. Note that this is a just a
shift of the indexing by one from the common initial conditions F0 = 0, F1 = 1 A000045.
For an arbitrary positive integer, this unique decomposition into Fibonacci numbers is called
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its Zeckendorf decomposition [11]. The result on the uniqueness and existence of such de-
compositions has been generalized to a much larger class of linear recurrence relations; the
following definitions are from Miller and Wang [9].

Definition 1.1. We say a sequence (Hn)
∞
n=1 of positive integers is a Positive Linear Recur-

rence Sequence (PLRS) if the following properties hold:

1. Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L, (1.1)

with L, c1 and cL positive.

2. Initial conditions: H1 = 1, and for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1. (1.2)

Definition 1.2 (Legal decompositions). We call a decomposition
∑m

i=1 aiHm+1−i of a pos-
itive integer N (and the sequence (ai)

m
i=1) legal if a1 > 0, the other ai ≥ 0, and one of the

following two conditions holds:

1. We have m < L and ai = ci for 1 ≤ i ≤ m.

2. There exists s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1 and as < cs, (1.3)

as+1, . . . , as+` = 0 for some ` ≥ 0, and (bi)
m−s−`
i=1 (with bi = as+`+i) is legal or empty.

The following theorem is due to Grabner and Tichy [5], and stated in this form in Miller
and Wang [9].

Theorem 1.3 (Generalized Zeckendorf’s Theorem for PLRS). Let (Hn)
∞
n=1 be a positive

linear recurrence sequence. Then there is a unique legal decomposition for each positive
integer N ≥ 0.

Next, we introduce completeness, as defined by Hoggatt and King [7].

Definition 1.4. An arbitrary sequence of positive integers (ai)∞i=1 is complete if and only if
every positive integer n can be represented in the form n =

∑∞
i=1 εiai, where ε ∈ {0, 1}. A

sequence that fails to be complete is incomplete.

In other words, a sequence of positive integers is complete if and only if each positive
integer can be written as a sum of unique terms of the sequence.
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Example 1.5. The Fibonacci sequence is complete. This follows directly from Zeckendorf’s
theorem, which is stronger statement, as it states that every positive integer may be written
as the sum of non-consecutive Fibonacci numbers. Completeness does not require that the
decompositions use non-consecutive terms.

Note that unlike Zeckendorf decompositions, complete decompositions are not necessarily
unique. In the case of the Fibonacci sequence, while the Zeckendorf decomposition of 10 as
10 = f2 + f5 = 8 + 2 is unique, we may find multiple complete decompositions, as with
10 = 2 + 8 = 2 + 3 + 5.

After seeing this example, it is natural to ask if Theorem 1.3 implies that all PLRS’s are
complete. Previous work in numeration systems by Gewurz and Merola [6] has shown that
specific classes of recurrences as defined by Fraenkel [4] are complete under their greedy ex-
pression. However, we cannot generalize this result to all PLRS’s. For legal decompositions,
the decomposition rule can permit some sequence terms to be used multiple. This is not
allowed for completeness decompositions, where each unique term from the sequence can be
used at most once.

Example 1.6. The PLRS Hn+1 = Hn + 3Hn−1 has terms (1, 2, 5, 11, . . .) A006138. The
unique legal decomposition for 9 is 1 · 5 + 2 · 2, where the term 2 is used twice. However,
no complete decomposition for 9 exists. Adding all terms from the sequence less than 9 is
1 + 2 + 5 = 8, and to include 11 or any subsequent term surpasses 9.

We also make use of the following criterion for completeness of a sequence, due to Brown
[3].

Theorem 1.7 (Brown’s Criterion). If an is a nondecreasing sequence, then an is complete
if and only if a1 = 1 and for all n > 1,

an+1 ≤ 1 +
n∑

i=1

ai. (1.4)

An immediate corollary is the following sufficient, though not necessary, condition for
completeness, which we call the doubling criterion. The proof is left to the appendix, as
Corollary A.2.

Corollary 1.8 (Doubling Criterion). If an is a nondecreasing sequence such that an ≤ 2an−1
for all n ≥ 2, then an is complete.

Remark 1.9. By considering the special case when an = 2an−1, this immediately implies that
the doubling sequence itself (1, 2, 4, 8, . . .) A000079 is complete.

In this paper, we characterize many types of PLRS by whether they are complete or not
complete.

Notation 1.10. We use the notation [c1, . . . , cL] to represent the PLRS defined by the
recurrence Hn+1 = c1Hn + · · · + cLHn+1−L and initial conditions as given in Definition 1.1.
When the context is clear, we also use [c1, . . . , cL] to refer to the coefficients themselves.
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A simple case to consider is when all coefficients ci for the sequence [c1, . . . , cL] are
positive. The following result, proved in Section 2, completely characterizes these sequences
are either complete or incomplete.

Theorem 1.11. If (Hn) is a PLRS generated by positive coefficients [c1, . . . , cn], then (Hn)
is complete if and only if the coefficients are [1, . . . , 1︸ ︷︷ ︸

L

] or [1, . . . , 1︸ ︷︷ ︸
L−1

, 2] for L ≥ 1.

The situation becomes much more complicated when we consider all PLRS’s, in partic-
ular those that have at least one 0 as a coefficient. In order to be able to make progress
on determining completeness of these PLRS’s, we develop several tools. The following three
theorems are results that allow certain modifications of the coefficients [c1, . . . , cL] that gen-
erate a PLRS that is known to be complete or incomplete, and preserve completeness or
incompleteness. They are proved in Section 2.

Theorem 1.12. Consider sequences (Gn) = [c1, . . . , cL] and (Hn) = [c1, , . . . , cL, cL+1], where
cL+1 is any positive integer. If (Gn) is incomplete, then (Hn) is incomplete as well.

Theorem 1.13. Consider sequences (Gn) = [c1, . . . , cL−1, cL] and (Hn) = [c1, . . . , cL−1, kL],
where 1 ≤ kL ≤ cL. If (Gn) is complete, then (Hn) is also complete.

Theorem 1.14. Consider sequences (Gn) = [c1, . . . , cL−1, cL] and (Hn) = [c1, . . . , cL−1+cL].
If (Gn) is incomplete, then (Hn) is also incomplete.

The next two theorems are results that classify two families of PLRS’s as complete or
incomplete. They are shown in Section 3.

Theorem 1.15. The sequence generated by [1, 0, . . . , 0︸ ︷︷ ︸
k

, N ] is complete if and only if 1 ≤

N ≤ d(k + 2)(k + 3)/4e, where d·e is the ceiling function.

The sequence of upper bounds on N in Theorem 1.15 is (2, 3, 5, 8, 11, 14, 18, . . .), as k
increases, which is a shift of A054925.

Theorem 1.16. The sequence generated by [1, 1, 0, . . . , 0︸ ︷︷ ︸
k

, N ] is complete if and only if 1 ≤

N ≤ b(fk+6 − k − 5)/4c, where fn are the Fibonacci numbers with f1 = 1, f2 = 2 and b·c is
the floor function.

We have a partial extension of these theorems to when there are g initial ones followed
by k zeroes in the collection of coefficients.

Theorem 1.17. Consider a PLRS generated by coefficients [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, N ], with g, k ≥

1.
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1. For g ≥ k + dlog2 ke, the sequence is complete if and only if 1 ≤ N ≤ 2k+1 − 1.

2. For k ≤ g ≤ k+dlog2 ke, the sequence is complete if and only if 1 ≤ N ≤ 2k+1−dk/2g−ke.

Finally, in Section 4, we introduce some results and conjectures on completeness based
on the principal roots of a PLRS. We determine some criteria for completeness based on
the size of the principal root and find that there is a certain indeterminate region where the
principal root does not reveal any information.

2 Modifying sequences
A basic question to ask is how far we can tweak the coefficients used to generate a sequence,
yet preserve its completeness. The modifying process turns out to be well-behaved and
heavily dependent on the location of coefficients that are changed. Before we start looking
into implementing any changes to our sequences, we first need to understand the maximal
complete sequence.

2.1 Maximal complete sequence

We introduce the maximal complete sequence, which serves an important role. First, we
look at all complete sequences with only positive coefficients.

Proof of Theorem 1.11. Assume that (Hn) is complete. By the definition of a PLRS and by
Brown’s criterion, we have

c1HL−1 + c2HL−2 + · · ·+ cL−1H1 + 1 = HL ≤ 1 +H1 +H2 + · · ·+HL−1. (2.1)

Since ci ≥ 1 for 1 ≤ i ≤ L, this implies that ci = 1 for 1 ≤ i < L. By the definition of a
PLRS,

HL+1 = c1HL + c2HL−1 + · · ·+ cLH1 = HL +HL−1 + · · ·+H2 + cLH1. (2.2)

Combining this with Brown’s criterion gives

HL+1 = HL +HL−1 + · · ·+ cLH1 ≤ 1 +H1 +H2 + · · ·+HL−1

cLH1 ≤ 1 +H1 = 2. (2.3)

Hence cL ≤ 2, which completes the forward direction of the proof.
We know that if the coefficients are just [2], then the sequence is complete by Remark 1.9.

So, now assume that c1 = · · · = cL−1 = 1 and 1 ≤ cL ≤ 2. We argue by strong induction on
n that Hn satisfies Brown’s criterion. We can show this explicitly for 1 ≤ n < L. First, if
n = 1, then Hn = 1, as desired. Next, if 1 ≤ n < L, then

Hn+1 = c1Hn + · · ·+ cnH1 + 1 = Hn + · · ·+H1 + 1, (2.4)
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so these terms satisfy Brown’s criterion. Now assume that for some n ≥ L, for all n′ < n,

Hn′+1 ≤ Hn′ + · · ·+H1 + 1. (2.5)

It follows that

Hn+2 = Hn+1 + · · ·+Hn+2−L + cLHn+1−L

≤ Hn+1 + · · ·+Hn+2−L + 2Hn+1−L

≤ Hn+1 + · · ·+Hn+2−L +Hn+1−L + (Hn−L + · · ·+H1 + 1), (2.6)

where the inductive hypothesis was applied to Hn+1−L to obtain (2.6). This completes the
induction.

Now that we have found some complete sequences, it turns out that the sequence gener-
ated by the coefficient [2], i.e., (2n−1), is the maximal complete sequence.

Lemma 2.1. The complete sequence with largest span in summands is (2n−1).

Proof. Suppose there exists a complete sequence (Hn) with the largest span in summands.
As a complete sequence must satisfy Brown’s criterion, it suffices to takeHn+1 = 1+

∑n
i=1Hi.

Hence,

Hn+1 = 1 +
n∑
1

Hi = 1 +
n−1∑
1

Hi +Hn = 2Hn. (2.7)

By the intial conditions for a PLRS, H1 = 1 and H2 = 2. Thus, Hn = 2Hn−1 = 2n−1.

Remark 2.2. Thus (Hk) =
(
2k−1

)
is an inclusive upper bound for any complete sequence.

As it turns out, this sequence has can be generated by multiple collections of coefficients.

Corollary 2.3. A PLRS with coefficients [1, . . . , 1︸ ︷︷ ︸
L−1

, 2] generates the sequence Hn = 2n−1.

Proof. Consider the sequence (Hn) generated by [1, . . . , 1︸ ︷︷ ︸
L−1

, 2]. We proceed by induction on

L. Note H1 = 1 = 21−1 by the definition of the PLRS. Now, suppose Hk = 2k−1 for
k ∈ {1, . . . , n}. For n < L, note

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1

= Hn +Hn−1 + · · ·+H1 + 1

= 2n−1 + 2n−2 + · · ·+ 1 + 1 = 2n. (2.8)

Hence, the claim holds for all n < L. Now, for n ≥ L, note

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L

= Hn +Hn−1 + · · ·+ 2Hn+1−L

= 2n−1 + 2n−2 + · · ·+ 2n−L+1 + 2 · 2n−L = 2n. (2.9)

Thus, by induction, the claim holds for all n, L ∈ N.
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2.2 Modifications of sequences with arbitrary coefficients

Modifying coefficients in order to preserve completeness proves to be a balancing act. Some-
times increasing a coefficient causes an incomplete sequence to become complete, while
other times, increasing a coefficient causes a complete sequence to become incomplete.
For example, [1, 0, 0, 0, 0, 0, 15] is incomplete; increasing the second coefficient to 1, i.e.,
[1, 1, 0, 0, 0, 0, 15] is complete. Further increasing it to 2, i.e., [1, 2, 0, 0, 0, 0, 15] is again in-
complete. To study how such modifications preserve completeness or incompleteness, we add
a new definition to our toolbox.

Definition 2.4. For a sequence (Hn), we define its nth Brown’s gap

BH,n := 1 +
n−1∑
i=1

Hi −Hn. (2.10)

Thus, from Brown’s criterion, (Hn) is complete if and only if BH,n ≥ 0 for all n ∈ N.
Our next questions is: What happens if we append one more coefficient to [c1, . . . , cL]?

It turns out that if our sequence is already incomplete, appending any new coefficients will
never make it complete. This is Theorem 1.12, which using are ready to prove using Brown’s
gap.

Proof of Theorem 1.12. By Brown’s criterion, it is clear that (Gn) is incomplete if and only
if there exists n such that BG,n < 0. We claim that for all m, BH,m ≤ BG,m. If true, our
lemma is proven: suppose BG,n < 0 for some n, we would see BH,n ≤ BG,n < 0, implying
(Hn) is incomplete as well.

We proceed by induction. Clearly, BH,k = BG,k for 1 ≤ k ≤ L. Further, for k = L, we
see

BG,L+1−BH,L+1 = 1+
L∑
i=1

Gi−GL+1−

(
1 +

L∑
i=1

Hi −HL+1

)
= HL+1−GL+1 = 1 > 0. (2.11)

Now, let m ≥ 2 be arbitrary, and suppose

BH, L+m−1 ≤ BG, L+m−1. (2.12)

We wish to show that BH, L+m ≤ BG, L+m. Note that

BH, L+m −BH, L+m−1 = 2HL+m−1 −HL+m. (2.13)

Similarly,
BG, L+m −BG, L+m−1 = 2GL+m−1 −GL+m. (2.14)

We use Lemma B.1, which states that for all k ≥ 2, HL+k−GL+k ≥ 2(HL+k−1−GL+k−1).
Applying this to (2.13) and (2.14), we see that BH, L+m−BH, L+m−1 ≤ BG, L+m−BG, L+m−1.
Summing this inequality to both sides of inequality (2.12), we arrive at BH,L+m ≤ BG,L+m,
as desired.
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Now, we turn our attention to the behavior when we decrease the last coefficient for any
complete sequence. In Theorem 1.13, we find that decreasing the last coefficient for any
complete sequence preserves completeness.

Proof of Theorem 1.13. Given that (Gn) is complete, suppose for the sake of contradiction
that there exists an incomplete (Hn). Thus, let m be the least such that

Hm > 1 +
m−1∑
i=1

Hi. (2.15)

Simultaneously, as (Gn) is complete, by Brown’s criterion,

Gm ≤ 1 +
m−1∑
i=1

Gi. (2.16)

First, suppose m ≤ L. However, for all n ≤ L, Gn = Hn, hence

Hm = Gm ≤ 1 +
m−1∑
i=1

Gi = 1 +
m−1∑
i=1

Hi, (2.17)

which contradicts (2.15). Now, suppose m > L. Therefore,

Gm ≤ 1 +
m−1∑
i=1

Gi = 1 +
L∑
i=1

Gi +
m−1∑
i=L+1

Gi = 1 +
L∑
i=1

Hi +
m−1∑
i=L+1

Gi. (2.18)

This implies

1 +
L∑
i=1

Hi ≥ Gm −
m−1∑
i=L+1

Gi. (2.19)

Now, we know that

Hm > 1 +
m−1∑
i=1

Hi = 1 +
L∑
i=1

Hi +
m−1∑
i=L+1

Hi ≥ Gm −
m−1∑
i=L+1

Gi +
m−1∑
i=L+1

Hi, (2.20)

and thus

Hm −
m−1∑
i=L+1

Hi > Gm −
m−1∑
i=L+1

Gi. (2.21)

We claim that the opposite of (2.21) is true, arguing by induction on m. For m = L+ 1, we
obtain GL+1 ≥ HL+1 as kL ≤ cL. Now, assume that

Gm −
m−1∑
i=L+1

Gi ≥ Hm −
m−1∑
i=L+1

Hi (2.22)
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is true for a positive integer m. Using the inductive hypothesis, it then follows that

Gm+1 −
m∑

i=L+1

Gi = Gm+1 −
m−1∑
i=L+1

Gi −Gm ≥ Gm+1 − 2Gm +Hm −
m−1∑
i=L+1

Hi. (2.23)

Finally, we use Lemma B.2, proved in Appendix B, which states that for all k ∈ N, HL+k+1−
2HL+k ≤ GL+k+1 − 2GL+k. Note

Gm+1 − 2Gm +Hm −
m−1∑
i=L+1

Hi ≥ Hm+1 − 2Hm +Hm −
m−1∑
i=L+1

Hi = Hm+1 −
m∑

i=L+1

Hi, (2.24)

which does contradict (2.21) for all m > L. Therefore, for all m ∈ N, we have contradicted
(2.15). Hence, (Hn) must be complete as well.

The result above is crucial in our characterization of families of complete sequences in
Section 3; finding one complete sequence allows us to decrease the last coefficient to find
more. Next, we prove two lemmas that together prove Theorem 1.14.

Lemma 2.5. Let (Gn) be the sequence defined by [c1, . . . , cL], and let (Hn) be the sequence
defined by [c1, . . . , cL−1 + 1, cL − 1]. If (Gn) is incomplete, then (Hn) must be incomplete as
well.

Proof. We claim that for all m, BH,m ≤ BG,m. This lemma is proven using similar reasoning
as for Lemma 1.12. We proceed by induction. Clearly, BH,k = BG,k for 1 ≤ k ≤ L − 1.
Further, for k = L, we see

BG,L −BH,L = 1 +
L−1∑
i=1

Gi −GL −

(
1 +

L−1∑
i=1

Hi −HL

)
= HL −GL = 1 > 0. (2.25)

Now, let m ≥ 0 be arbitrary, and suppose

BH, L+m ≤ BG, L+m. (2.26)

We wish to show that BH, L+m+1 ≤ BG, L+m+1. Note that

BH, L+m+1 −BH, L+m = 2HL+m −HL+m+1, (2.27)

and similarly,
BG, L+m+1 −BG, L+m = 2GL+m −GL+m+1. (2.28)

We use Lemma B.3, which says that for all k ≥ 0, HL+k+1−GL+k+1 ≥ 2 (HL+k −GL+k). Ap-
plying it to (2.27) and (2.28), we see BH, L+m+1−BH, L+m ≤ BG, L+m+1−BG, L+m. Summing
this inequality to both sides of inequality (2.26), we conclude that BH,L+m+1 ≤ BG,L+m+1,
as desired.
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How many times can Lemma 2.5 be applied? Enough times to get all the way up to
[c1, . . . , cL−1 + cL − 1, 1], but no further, as the last coefficient must remain positive to stay
a PLRS.

Lemma 2.6. Let (Gn) be the sequence defined by [c1, . . . , cL−1, 1], and let (Hn) be the se-
quence defined by [c1, . . . , cL−1 + 1]. If (Gn) is incomplete, then (Hn) must be incomplete as
well.

Remark 2.7. Despite the similarities, Lemma 2.6 is not directly implied by Lemma 2.5; both
are necessary for the proof Theorem 1.14. Applying Lemma 2.5 (cL − 1) times proves that
if [c1, . . . , cL−1, cL] is incomplete, then [c1, . . . , cL−1 + cL − 1, 1] is incomplete; at this point,
we cannot apply the lemma further while maintaining a positive final coefficient to meet the
definition of a PLRS. Hence the case of Lemma 2.6 must be dealt with separately, in order
to arrive at the full result of Theorem 1.14.

Proof. The proof is similar to that of Lemma 2.5. We aim to show that BH,m ≤ BG,m for all
m. Clearly BH,k = BG,k for 1 ≤ k ≤ L. Further, for k = L+ 1, we see

BG,L+1−BH,L+1 =
L∑
i=1

Gi−GL+1−

(
1 +

L−1∑
i=1

HL −HL+1

)
= HL+1−GL+1 = c1 > 0. (2.29)

Now, let m ≥ 0 be arbitrary, and suppose

BH,L+m ≤ BG,L+m. (2.30)

We wish to show that BH,L+m+1 ≤ BG,L+m+1. Note that

BH,L+m+1 −BH,L+m = 2HL+m −HL+m+1, (2.31)

and similarly
BG,L+m+1 −BG,L+m = 2GL+m −GL+m+1. (2.32)

We use Lemma B.4, which states that for all k ≥ 0, HL+k+1 − GL+k+1 ≥ 2 (HL+k −GL+k).
Applying it to equations (2.31) and (2.32), we see BH,L+m+1−BH,L+m ≤ BG,L+m+1−BG,L+m.
Summing this inequality to both sides of Inequality (2.30), we conclude that BH,L+m+1 ≤
BG,L+m+1, as desired.

Using these lemmas, we can now prove Theorem 1.14.

Proof of Theorem 1.14. We apply Lemma 2.5 cL−1 times to conclude that if [c1, . . . , cL−1, cL]
is incomplete, then [c1, . . . , cL−1 + cL − 1, 1] is incomplete. Finally, applying Lemma 2.6, we
achieve the desired result.
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3 Families of sequences
Recall that Theorem 1.13 says that given a complete PLRS, decreasing the last coefficient
preserves its completeness. This raises a natural question: given the first L − 1 coefficients
c1, c2, . . . , cL−1, what is the maximal N such that [c1, c2, . . . , cL−1, N ] is complete? In this
section we explore this question.

3.1 Using 1’s and 0’s as initial coefficients

We first prove Theorems 1.15 and 1.16, which are about sequences with 1 and 0’s as the first
coefficients. These proofs are followed by a conjecture on how complete sequences of these
forms can be modified to obtain additional complete sequences and some progress toward
proving the conjecture.

Proof of Theorem 1.15. First assume that (Hn) is complete. By the definition of a PLRS,
we can easily generate the first k+2 terms of the sequence: Hi = i for all 1 ≤ i ≤ k+2. We
then have for all n > k + 1,

Hn+1 = Hn +NHn−k−1, (3.1)

which implies that
Hk+4 = Hk+3 +NH2 = Hk+3 + 2N. (3.2)

By Brown’s criterion,
Hk+4 ≤ Hk+3 +Hk+2 + · · ·+H1 + 1. (3.3)

By (3.2),
Hk+3 + 2N ≤ Hk+3 +Hk+2 + · · ·+H1 + 1, (3.4)

and we obtain

2N ≤ Hk+2 +Hk+1 + · · ·+H1 + 1

= (k + 2) + (k + 1) + · · ·+ 1 + 1

=
(k + 2)(k + 3)

2
+ 1, (3.5)

and thus we find
N ≤ (k + 2)(k + 3)

4
+

1

2
. (3.6)

Since N is an integer and b(k + 2)(k + 3)/4 + 1/2c = d(k + 2)(k + 3)/4e, we may take the
floor of the right hand side of equation (3.6), and then N ≤ d(k + 2)(k + 3)/4e.

We now prove that if N ≤ d(k + 2)(k + 3)/4e, then (Hn) is complete. We first show
that if N = d(k + 2)(k + 3)/4e, then (Hn) is complete. Taking the recurrence relation
Hn+1 = Hn +NHn−k−1, and applying Brown’s criterion gives

Hn+1 = Hn +NHn−k−1 ≤ Hn + (N − 2)Hn−k−1 +Hn−k−1 +Hn−k−2 + · · ·+H1 + 1. (3.7)

12



By Lemma C.1, we can expand (N − 2)Hn−k−1 and find that

Hn+1 ≤ Hn +Hn−1 + · · ·+Hn−k +Hn−k−1 +Hn−k−2 + · · ·+H1 + 1. (3.8)

Hence, by Brown’s criterion, the sequence (Hn) is complete. Lastly, by Theorem 1.13, for
all positive N < d(k + 2)(k + 3)/4e, the sequence is also complete.

Proof of Theorem 1.16. Suppose that (Hn) is complete. Using the definition of a PLRS, the
first k + 3 terms of the sequence can be generated in the same way: Hi = fi+1 − 1 for all
1 ≤ i ≤ k+3, where fn is the nth Fibonacci number. Proceeding in a manner similar to the
proof of Theorem 1.15, we see that

Hk+4 = Hk+3 +Hk+2 +NH1 = fk+5 +N − 2,

Hk+5 = Hk+4 +Hk+3 +NH2 = fk+6 + 3N − 3,

Hk+6 = Hk+5 +Hk+4 +NH3 = fk+7 + 8N − 5. (3.9)

By applying Brown’s criterion,

Hk+6 ≤ Hk+5 +Hk+4 + · · ·+H1 + 1

= fk+6 + 3N − 3 + fk+5 +N − 2 +
k+3∑
i=1

Hi + 1

= fk+7 + 4N − 5 +
k+3∑
i=1

(fi+1 − 1) + 1. (3.10)

Next,

fk+7 + 8N − 5 ≤ fk+7 + 4N − 5 +
k+3∑
i=1

(fi+1 − 1) + f1, (3.11)

which implies

4N ≤
k+3∑
i=1

(fi+1 − 1) + f1 =
k+4∑
i=1

fi + (k + 3) = fk+6 + (k + 5). (3.12)

Thus
N ≤ fk+6 − k − 5

4
, (3.13)

and since N is an integer,

N ≤
⌊
fk+6 − k − 5

4

⌋
. (3.14)

Next, we show that if N = b(fk+6 − k − 5)/4c, then (Hn) is complete. The initial conditions
can be found easily, and for the later terms we have

Hn+1 = Hn +Hn−1 +NHn−k−2

13
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Figure 1: The maximal N such that [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, N ] is complete, with k and g varying.

Each color represents a fixed k.

≤ Hn +Hn−1 + (N − 2)Hn−k−2 +Hn−k−2 +Hn−k−3 + · · ·+H1 + 1. (3.15)

Using Lemma C.2, we expand (N − 2)Hn−k−2 and obtain

≤ Hn +Hn−1 +Hn−2 + · · ·+Hn−k−1 +Hn−k−2 +Hn−k−3 + · · ·+H1 + 1. (3.16)

Hence, by Brown’s criterion, this sequence is complete. Lastly, by Theorem 1.13, for all
positive N < b(fk+6 − k − 5)/4c, the sequence is also complete.

We want to find a more general result for [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, N ], as seen in Figure 1.

Interestingly, we see that as we keep k fixed and increase g, the bound increases, and
then stays constant from some value of g onward. This motivates the following conjecture.

Conjecture 3.1. If [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, N ] is complete, then so is [1, . . . , 1︸ ︷︷ ︸
g+1

, 0, . . . , 0︸ ︷︷ ︸
k

, N ].
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We have made some progress towards this conjecture; in fact, we show the precise bound
for N for the case where g ≥ k in Theorem 1.17.

Theorem 3.2. The PLRS (Hn) generated by [c1, c2, . . . , cL] is complete if{
BH,n ≥ 0, if n < L;
BH,n > 0, if L ≤ n ≤ 2L− 1.

(3.17)

Proof. Consider L ≥ 2; we see that if c1 ≥ 2, then the sequence is automatically incomplete,
so we need only consider c1 = 1. For Bn := BH,n, and we show by induction on n that
Bn > 0 when n ≥ L. Suppose Bn > 0 for L ≤ n ≤ m (with m ≥ 2L− 1). Then

Bm+1 = 1 +
m∑
i=1

Hi −Hm+1

= 1 +
L∑
i=1

Hi +
m∑

i=L+1

Hi −

(
Hm +

L∑
j=2

cjHm+1−j

)

= 1 +
L∑
i=1

Hi +
m∑

i=L+1

(
Hi−1 +

L∑
j=2

cjHi−j

)
−

(
Hm +

L∑
j=2

cjHm+1−j

)

=

(
1 +

m−1∑
i=1

Hi −Hm +HL

)
+

L∑
j=2

cj

(
m∑

i=L+1

Hi−j −Hm+1−j

)

= (Bm +HL) +
L∑

j=2

cj

(
1 +

m∑
i=j+1

Hi−j −Hm+1−j − 1−
L∑

i=j+1

Hi−j

)

= (Bm +HL) +
L∑

j=2

cj

(
Bm+1−j − 1−

L∑
i=j+1

Hi−j

)

= Bm +
L∑

j=2

cj(Bm+1−j − 1) +HL −
L∑
i=3

i−1∑
j=2

cjHi−j

= Bm +
L∑

j=2

cj(Bm+1−j − 1) +HL −
L∑
i=3

(Hi −Hi−1 − 1)

= Bm +
L∑

j=2

cj(Bm+1−j − 1) + (L− 2) +HL −
L∑
i=3

(Hi −Hi−1)

= Bm +
L∑

j=2

cj(Bm+1−j − 1) + L. (3.18)

The last line is positive since Bm+1−j − 1 ≥ 0 and Bm, L > 0. Our proof by induction is
complete.
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Lemma 3.3. The PLRS (Hi) generated by [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, 2k+1] is incomplete if g ≥ k ≥ 1.

Proof. Suppose this sequence is complete. Note that

H2g+2 = H2g+1 + · · ·+Hg+2 + 2k+1Hg+1−k. (3.19)

By applying Brown’s criterion to H2g+2, we see that

2k+1Hg+1−k ≤
g+1∑
i=1

Hi + 1. (3.20)

Now, note k is positive, so that g + 1 − k ≤ g + 1. Also, by the structure of the sequence,
Hi = 2i−1 for i ≤ g + 1. Hence

2g+1 = 2k+1Hg+1−k = 2k+12g−k ≤
g+1∑
i=1

2i−1 + 1 = 2g+1 (3.21)

Therefore one may substitute previous inequalities with equalities and obtain

H2g+2 =

2g+1∑
i=1

Hi + 1. (3.22)

It follows immediately from (3.22) that

2g+2∑
i=1

Hi + 1 = 2H2g+2. (3.23)

Now, consider
H2g+3 = H2g+2 +H2g+1 + · · ·+Hg+3 + 2k+1Hg+2−k. (3.24)

Since g + 2− k ≤ g + 1 as k ≥ 1, one gets

Hg+2−kM = 2g+1−k2k+1 = 2g+2 = 2(2g+1) = 2Hg+2. (3.25)

Hence

H2g+3 = H2g+2 +H2g+1 + · · ·+Hg+3 + 2Hg+2

= H2g+2 + (H2g+1 + · · ·+Hg+3 +Hg+2 +Hg+2)

> H2g+2 + (H2g+1 + · · ·+Hg+3 +Hg+2 +Hg+1−k)

= 2H2g+2 =

2g+2∑
i=1

Hi + 1. (3.26)

So H2g+3 causes Brown’s criterion to fail, rendering whole sequence incomplete.
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We now show the stabilizing behavior of the bound mentioned above.

Lemma 3.4. If g ≥ k + dlog2 ke, then [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, 2k+1 − 1] is complete.

Proof. Define (fn) = [1, . . . , 1︸ ︷︷ ︸
g

], and (Hn) = [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, 2k+1−1]. We can calculate the

terms of (fn) and (Hn) up to 2g + 1. Namely,

Hn = fn = 2n−1, if 1 ≤ n ≤ g;
Hg+n = fg+n + 2n−1, if 1 ≤ n ≤ k + 1;

Hg+k+1+n = fg+k+1+n +
(
2k+1 − 1

) (
2n + 2n−2 (n− 1)

)
, if 1 ≤ n ≤ g − k;

fg+n = 2g+n−1 − 2n−2 (n+ 1) , if 1 ≤ n ≤ g. (3.27)

The third and fourth lines are verified in Lemmas C.4 and C.5, respectively. We show that
the conditions in Theorem 3.2 hold for (Hn). We can verify directly that Brown’s criterion
holds for the first (2g + 1) terms of (Hn); in fact, for Bn := BH,n, we get{

Bn ≥ 0, if 1 ≤ n ≤ g + k;
Bn > 0, if g + k + 1 ≤ n ≤ 2g + 1.

(3.28)

Thus, it remains to show that Bn > 0 for 2g + 2 ≤ n ≤ 2 (g + k)− 1.

Case 1: 2g + 2 ≤ n ≤ 2g + k + 1.

Define b(n) := Hn − fn. Note that b(n) ≥ 0, and by induction, b(n) > 0 for all
n ≥ g + 1. For n ≥ g + k + 2,

fn + b(n) = Hn

= Hn−1 +Hn−2 + · · ·+Hn−g +
(
2k+1 − 1

)
Hn−(g+k+1)

=

g∑
i=1

fn−i +

g∑
i=1

b (n− i) +
(
2k+1 − 1

)
Hn−(g+k+1). (3.29)

Since fn =
∑g

i=1 fn−i,

b(n) =

g∑
i=1

b (n− i) +
(
2k+1 − 1

)
Hn−(g+k+1). (3.30)

Thus, for any n ≥ 2g + 2,

Bn = 1 +
n−1∑
i=1

Hi −Hn
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= 1 +
n−1∑
i=1

(fi + b(i))− (fn + b(n))

=

(
1 +

n−1∑
i=1

fi − fn

)
−
(
2k+1 − 1

)
Hn−(g+k+1) +

n−(g+1)∑
i=g+1

b(i)

>

(
1 +

n−1∑
i=1

fi − fn

)
−
(
2k+1 − 1

)
Hn−(g+k+1). (3.31)

We are to show that the last term is nonnegative. As n− (g + k + 1) ≤ g,

1 +
n−1∑
i=1

fi − fn −
(
2k+1 − 1

)
Hn−(g+k+1)

= 1 +

n−(g+1)∑
i=1

fi −
(
2k+1 − 1

)
Hn−(g+k+1)

= 1 +

g∑
i=1

fi +

n−(2g+1)∑
i=1

fg+i −
(
2k+1 − 1

)
· 2n−(g+k+1)−1

= 1 +

g∑
i=1

2i−1 +

n−(2g+1)∑
i=1

(
2g+i−1 − 2i−2 (i+ 1)

)
− 2n−g−1 + 2n−(g+k+1)−1

= 2n−(g+k+1)−1 −
n−(2g+1)∑

i=1

2i−2 (i− 1)−
n−(2g+1)∑

i=1

2i−1

= 2n−(g+k+1)−1 −
(
2n−(2g+2) (n− (2g + 3)) + 1

)
−
(
2n−(2g+2) − 1

)
= 2n−(g+k+1)−1 − 2n−(2g+2) (n− (2g + 2))

= 2n−(2g+2)
(
2g−k − (n− (2g + 2))

)
≥ 2n−(2g+2)

(
2g−k − (k − 1)

)
> 0. (3.32)

Note that the last line comes from g ≥ k + log2 k, which implies 2g−k ≥ k > k − 1.

Case 2: 2g + k + 2 ≤ n ≤ 2g + 2k + 1.

We show that Bn+1 ≥ Bn for 2g + k + 2 ≤ n < 2g + 2k + 1, and that B2g+k+2 > 0.

Bn+1 −Bn = 2Hn −Hn+1

= 2Hn −

(
n∑

i=n−g+1

Hi + (2k+1 − 1)Hn−(g+k)

)

18



=

(
Hn −

n∑
i=n−g+1

Hi

)
+ (2k+1 − 1)Hn−(g+k)

= Hn−g − (2k+1 − 1)(Hn−(g+k) −Hn−(g+k+1)). (3.33)

Replace n by 2g + k + 1 +m with 1 ≤ m ≤ k to obtain

= H(g+k+1)+m − (2k+1 − 1)(Hg+m+1 −Hg+m)

= H(g+k+1)+m − (2k+1 − 1)(2g+m−1 − 2m−2(m+ 1)). (3.34)

For 1 ≤ m ≤ g−k, we have an explicit formula for H(g+k+1)+m, so we can substitute
directly to show that (3.33) is nonnegative. Thus, if g − k ≥ k (i.e., g ≥ 2k), then
this holds for all 1 ≤ m ≤ k. If g − k < k (i.e., g < 2k), then from Lemma C.7,
(3.33) is nonnegative. Thus, Bn+1 ≥ Bn for all 2g + k + 2 ≤ n ≤ 2g + k + 1. It
remains to show that B2g+k+2 > 0, which we can do by directly substituting the
explicit formulas.

Combining these lemmas, we can prove the first part of Theorem 1.17.

Proof of Theorem 1.17.1. From Lemmas 3.3 and 3.4, the bound for N is precisely 2k+1 − 1
when g ≥ k + dlog2 ke.

Next, we consider when k ≤ g ≤ k+ dlog2 ke, and prove the second part of Theorem 1.17
using similar methods.

Proof of Theorem 1.17.2. First, we show that for N > 2k+1 − dk/2g−ke, (Hi) is incomplete,
and suppose k ≥ 2. Let us calculate the initial L = g + k + 1 terms of the sequence. Note

Hn = 2n−1 for all 1 ≤ n ≤ g + 1

Hg+n = 2g+n−1 − 2n−2(n− 1) for all 1 ≤ n ≤ k + 1. (3.35)

Let Bi := BH,i. Then, we consider Brown’s gap B2g+k+2,

B2g+k+2 =

(
1 +

2g+k+1∑
i=1

Hi

)
−H2g+k+2

=

(
1 +

2g+k+1∑
i=1

Hi

)
−

(
2g+k+1∑
i=g+k+2

Hi +NHg+1

)

=

(
1 +

g+k+1∑
i=1

Hi

)
−NHg+1

= 1 +

g∑
i=1

Hi +

g+k+1∑
i=g+1

Hi −NHg+1
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= 1 +

g∑
i=1

2i−1 +
k+1∑
i=1

(
2g+i−1 − 2i−2(i− 1)

)
− 2gN

= 2g+k+1 −
k∑

i=1

2i−1i− 2gN

= 2g+k+1 − 2k(k − 1)− 1− 2gN. (3.36)

Now, N > 2k+1 −
⌈
k/2g−k

⌉
by assumption so it follows that N ≥ 2k+1 − k/2g−k + 1, hence

≤ 2g+k+1 − 2k(k − 1)− 1− 2g
(
2k+1 − k

2g−k
+ 1

)
= 2k − 2g − 1, (3.37)

which must be negative as g ≥ k. So (Hn) fails Brown’s criterion at the (2g+ k+1)st term,
rendering the sequence incomplete.

Now we can show that for N = 2k+1 − dk/2g−ke, (Hi) is complete by Theorem 3.2. We
can easily verify that Bn ≥ 0 for all 1 ≤ n ≤ g + k + 1 and Bg+k+1 > 0; it remains to show
that Bn > 0 for g + k + 2 ≤ n ≤ 2g + 2k + 1. We consider two cases.

Case 1: 2 ≤ n− (g + k) ≤ g + 1.

We want to show that Bn+1 ≥ Bn for all 2 ≤ n−(g+k) ≤ g+1 and that Bg+k+2 > 0.
Now,

Bn = 1 +
n−1∑
i=1

Hi −Hn

= 1 +
n−1∑
i=1

Hi −

(
n−1∑

i=n−g

Hi +NHn−(g+k+1)

)

= 1 +

n−g−1∑
i=1

Hi −NHn−(g+k+1). (3.38)

Then, note that

Bn+1 −Bn = Hn−g −N
(
Hn−(g+k) −Hn−(g+k+1)

)
= Hn−g −N

(
2n−(g+k+1) − 2n−(g+k+2)

)
, (3.39)

and by assumption,

= Hn−g −
(
2k+1 −

⌈ k

2g−k

⌉)
2n−(g+k+2)

= 2n−(g+k+2)
⌈ k

2g−k

⌉
−
(
2n−g−1 −Hn−g

)
. (3.40)
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If n−g ≤ g+1, then 2n−g−1−Hn−g = 0, so Bn+1−Bn > 0. If g+2 ≤ n−g ≤ g+k+1,
then

2n−g−1 −Hn−g = 2n−2g−2(n− 2g − 1) ≤ 2n−(g+k+2) k

2g−k
≤ 2n−(g+k+2)

⌈ k

2g−k

⌉
,

(3.41)
so that Bn+1 − Bn ≥ 0. In any case, Bn+1 ≥ Bn. We can verify directly that
Bg+k+2 > 0, completing this case.

Case 2: g ≤ n− (g + k) ≤ g + k + 1.

From the previous case, B2g+k+2 ≥ B2g+k+1 > 0. Now,

Bn = 1 +

n−g−1∑
i=1

Hi −NHn−(g+k+1)

= 1 +

n−2g−1∑
i=1

Hi +

n−g−1∑
i=n−2g

Hi −NHn−(g+k+1)

= 1 +

n−2g−1∑
i=1

Hi +Hn−g −NHn−(2g+k+1) −NHn−(g+k+1). (3.42)

Substituting n = 2g + k + 1 +m for 1 ≤ m ≤ k,

= 1 +
k+m∑
i=1

Hi +Hg+k+1+m −N(Hm +Hg+m)

≥ Hk+m+1 +Hg+k+1+m −N
(
2m−1 + 2g+m−1 − 2m−2(m− 1)

)
. (3.43)

Let Cm := Hk+m+1 +Hg+k+1+m−N(2m−1 + 2g+m−1 − 2m−2(m− 1)), from equation
(3.43). We show by strong induction that Cm > 0. By direct computation, C1 > 0.
Suppose it holds for all values from 1 to m − 1 for m ≥ 2. Then by the induction
hypothesis,

Hg+k+1+m = (Hg+k+m + · · ·+Hg+k+2) + (Hg+k+1 + · · ·+Hm+k+1) +NHm

>

m−1∑
i=1

(
N
(
2i−1 + 2g+1−i − 2i−2(i− 1)

)
−Hk+i+1

)
+

+

(
2g+k + · · ·+ 2m+k −

k+1∑
i=1

2i−2(i− 1)

)
+ 2m−1N

= N
(
2m − 1 + 2g+m+1 − 2g − 2m−2(m− 3)− 1

)
−

−
k+m∑
i=k+2

Hi +
(
2g+k+1 − 2m+k − 2k(k − 1)− 1

)
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≥ N
(
2m−1 + 2g+m−1 − 2m−2(m− 1)

)
− (2g + 2− 2m)N−

−
k+m∑

i=k+m−g

Hi +
(
2g+k+1 − 2m+k − 2k(k − 1)− 1

)
, (3.44)

where Hi = 0 for nonpositive i. Hence,

Cm = Hg+k+1+m −N
(
2m−1 + 2g+m−1 − 2m−2(m− 1)

)
+Hk+m+1

>

(
Hk+m+1 −

k+m∑
i=k+m−g

Hi

)
+
(
2g+k+1 − 2m+k − 2k(k − 1)− 1

)
−

− (2g + 2− 2m)N

= 1 +
(
2g+k+1 − 2m+k − 2k(k − 1)− 1

)
− (2g + 2− 2m)

(
2k+1 −

⌈
k

2g−k

⌉)
= 2m+k − 2k(k + 3) + (2g + 2− 2m)

⌈
k

2g−k

⌉
≥ 2m+k − 2k (k + 3) + (2g + 2− 2m)

k

2g−k

= 2m+k − 3 · 2k − (2m − 2)
k

2g−k

= (2m − 3)

(
2k − k

2g−k

)
− k

2g−k

≥ 2k − 2k

2g−k
≥ 2k − 2k ≥ 0. (3.45)

This completes the induction, so Bn ≥ Cm > 0.

Since both cases are satisfied, (Hi) is complete.

Remark 3.5. The case k = 1 is characterized in Lemma 3.7.

3.2 The “2L− 1 conjecture”

We conjecture a strengthened version of Theorem 3.2 as follows.

Conjecture 3.6. The PLRS (Hn) defined by [c1, . . . , cL] is complete if BH,n ≥ 0 for all
n ≤ 2L− 1, i.e., Brown’s criterion holds for the first 2L− 1 terms.

When using Brown’s criterion, it would be very helpful to know how many terms must
be checked to be sure that a PLRS is complete. This conjecture, if true, would be a powerful
tool to do so. We do not know yet if such a threshold exists for each L; however, if it does,
then it is at least 2L− 1, as shown by the following example, where k + 2 = L.
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Lemma 3.7. The sequence [1, . . . , 1, 0, 4], with k ones, where k ≥ 1, is always incomplete.
Moreover, it first fails Brown’s criterion on the (2k + 3)rd term.

Proof. We have the recurrence relation Hn+1 = Hn+ · · ·+Hn−k+1+4Hn−k−1. We show that
the term in the (2k + 3)rd position in the sequence fails Brown’s criterion. First,

H2k+3 = H2k+2 + · · ·+Hk+3 + 4Hk+1. (3.46)

Next, we observe that for 1 ≤ j ≤ k+ 1, we have Hj = 2j−1. Additionally, Hk+2 = 2k+1− 1.
Thus,

2Hk+1 = 2k+1 > 2k+1 − 1 = Hk+2. (3.47)

We also note that Hk+1 = Hk + · · ·+H1 + 1. Putting everything together,

H2k+3 = H2k+2 + · · ·+Hk+3 + 4Hk+1

= H2k+2 + · · ·+Hk+3 + 3Hk+1 +Hk + · · ·+H1 + 1

> H2k+2 + · · ·+Hk+3 +Hk+2 +Hk+1 +Hk + · · ·+H1 + 1. (3.48)

Hence, we have shown that [1, . . . , 1, 0, 4], with k ≥ 1 ones, is incomplete, as it fails Brown’s
criterion on the (2k + 3)rd term.

We now show that Brown’s criterion holds for the first (2k+2) terms. For 1 ≤ j ≤ k+1, we
haveHj = 2j−1, which satisfies the equalityHj+1 = Hj+· · ·+H1+1. When k+2 ≤ j ≤ 2k+2,

Hj+1 = Hj + · · ·+Hj−k+1 + 4Hj−k−1. (3.49)

Note that Hj−k−1 = Hj−k+2 + · · ·+H1 + 1 as 1 ≤ j − k − 1 ≤ k + 1, so

Hj+1 = Hj + · · ·+Hj−k+1 + 2Hj−k−1 +Hj−k−1 +Hj−k−2 + · · ·+H1 + 1 (3.50)

and as 2Hj−k−1 = 2j−k−1 = Hj−k, we see

Hj+1 = Hj + · · ·+Hj−k+1 +Hj−k +Hj−k−1 +Hj−k−1 +Hj−k−2 + · · ·+H1 + 1. (3.51)

Hence, this equality satisfies Brown’s criterion for terms k + 2 ≤ j ≤ 2k + 2.

Assuming this conjecture, we can explore sequences of the form [1, 0, . . . , 0, 1, . . . , 1, N ]
further. In Theorems 3.9 and 3.10, we show that the bound on N for [1, 0, . . . , 0︸ ︷︷ ︸

L−m−2

, 1, . . . , 1︸ ︷︷ ︸
m

, N ]

strictly increases if we keep L fixed and increase m from 0 to L − 3, i.e., switching the
coefficients from 0 to 1 gradually from the end so that at least one 0 remains. We first state
a following powerful lemma that is contingent on this conjecture.

Lemma 3.8 (Conditional). Let (Hn) defined by [1, 0, . . . , 0, 1, . . . , 1, N ] be a sequence with
L coefficients, m of which are ones. Then, if (Hn) is incomplete, it must fail Brown’s
criterion at the (L + 1)st or (L + 2)nd term. In other words, if HL+1 ≤ 1 +

∑L
i=1Hi and

HL+2 ≤ 1 +
∑L+1

i=1 Hi, then (Hn) is complete.
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The proof of this lemma is deferred to Lemma C.9 of Appendix C.

Theorem 3.9. Let (Hn) be a PLRS with L coefficients defined by [1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m

, N ],

where L ≥ 2m+ 2. Then (Hn) is complete if and only if

N ≤
⌊
(L−m) (L+m+ 1)

4
+

1

48
m(m+ 1)(m+ 2)(m+ 3) +

1− 2m

2

⌋
. (3.52)

Proof. First, note for all 1 ≤ n ≤ L−m, that Hn = n.
Now, we claim that for all 1 ≤ k ≤ m,

HL−m+k = L−m+
1

6
k(k + 1)(k + 2) + k. (3.53)

We use induction, appealing to the identity
∑n

a=1 a(a+ 1)/2 = n(n+ 1)(n+ 2)/6. We first
see that

HL−m+1 = HL−m +H1 + 1 = L−m+ 2 = L−m+
1∑

a=1

a(a+ 1)

2
+ 1. (3.54)

Additionally,

HL−m+2 = HL−m+1+H2+H1+1 = (L−m+2)+2+1+1 = L−m+
2∑

a=1

a(a+ 1)

2
+2. (3.55)

Now, suppose HL−m+k = L−m+
∑k

a=1 a(a+ 1)/2 + k for some k < m. Note that

HL−m+k+1 = HL−m+k +Hk+1 + · · ·+H1 + 1. (3.56)

Since we supposed L ≥ 2m + 2, we see k + 1 ≤ m + 1 ≤ L −m, and thus for all 1 ≤ i ≤
k, Hi = i. Thus,

HL−m+k+1 =

(
L−m+

k∑
a=1

a(a+ 1)

2
+ k

)
+

(k + 1)(k + 2)

2
+ 1

= L−m+
k+1∑
a=1

a(a+ 1)

2
+ k + 1. (3.57)

Thus, we have an explicit formula for Hi, for 1 ≤ i ≤ L.
Note that (Hn) is complete if and only if it fulfills Brown’s criterion for the (L+1)st and

(L + 2)nd term. We show that (Hn) fulfills the criterion for L + 2 if and only if the bound
above holds; it is not difficult to show that the bound for L+ 1 is less strict.
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Indeed, we wish to reduce the inequality

HL+2 = HL+1 +Hm+2 + · · ·+H3 + 2N ≤ 1 +
L+1∑
i=1

Hi (3.58)

⇐⇒ Hm+2 + · · ·+H3 + 2N ≤ 1 +
L∑
i=1

Hi. (3.59)

Simplifying the left hand side of inequality (3.59),

Hm+2 + · · ·+H3 + 2N = Hm+2 + · · ·+H3 + (H2 +H1 −H2 −H1) + 2N

=
(m+ 2)(m+ 3)

2
− 3 + 2N. (3.60)

Additionally,

1 +
L∑

n=1

Hn = 1 +
L−m∑
n=1

Hn +
L∑

n=L−m+1

Hn

= 1 +
(L−m) (L−m+ 1)

2
+

m∑
n=1

(
1

6
n(n+ 1)(n+ 2) + n+ L−m

)
. (3.61)

We use the fact that
∑m

n=1 n(n+ 1)(n+ 2) = m(m+ 1)(m+ 2)(m+ 3)/4 to simplify (3.61)
as follows:

1 +
(L−m) (L−m+ 1)

2
+
m(m+ 1)

2
+mL−m2 +

1

6

m∑
n=1

n(n+ 1)(n+ 2)

= 1 +
(L−m) (L−m+ 1)

2
+
m(m+ 1)

2
+mL−m2 +

1

24
m(m+ 1)(m+ 2)(m+ 3).

(3.62)

Hence (3.59) is equivalent to

(m+ 2) (m+ 3)

2
− 3 + 2N ≤ 1 +

(L−m) (L−m+ 1)

2
+
m(m+ 1)

2

+mL−m2 +
1

24
m(m+ 1)(m+ 2)(m+ 3). (3.63)

Simplifying, this gives us

N ≤
⌊
(L−m) (L+m+ 1)

4
+

1

48
m(m+ 1)(m+ 2)(m+ 3) +

1− 2m

2

⌋
. (3.64)
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Theorem 3.10. Let (Gn) and (Hn) be PLRS’s, both with L coefficients, which are defined
by [1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

m

, N ] and [1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m+1

, N + 1] respectively. Suppose L −m ≥ 4

(so that at least one zero is present in (Hn)), m ≥ (L − 1)/2, and (Gn) is complete. Then
(Hn) is also complete.

Proof. As (Gn) is complete, from Brown’s criterion, we obtain

GL+2 = GL+1 +
m+2∑
i=3

Gi +NG2 ≤ 1 +
L+1∑
i=1

Gi, (3.65)

which is equivalent to

2N ≤
L∑

i=m+3

Gi + 4. (3.66)

From Lemma 3.8, it suffices to show that

HL+1 ≤ 1 +
L∑
i=1

Hi and HL+2 ≤ 1 +
L+1∑
i=1

Hi, (3.67)

or equivalently,

N ≤
L−1∑

i=m+3

Hi (3.68)

and

2N ≤
L∑

i=m+4

Hi + 2. (3.69)

We first show (3.68). Combining with (3.66), it suffices to show that

L∑
i=m+3

Gi + 4 ≤ 2
L∑

i=m+4

Hi. (3.70)

From Lemma C.10, {
Gi ≤ Hi, if m+ 3 ≤ i ≤ L;
Gi ≤ Hi−1 − 1, if 2(L−m) < i ≤ L.

(3.71)

Thus,

L∑
i=m+3

Gi + 4 =

2(L−m)∑
i=m+3

Gi +
L∑

i=2(L−m)+1

Gi + 4
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≤
2(L−m)∑
i=m+3

Hi +
L−1∑

i=2(L−m)

Hi + (2m− L+ 4)

≤ 2
L∑

i=m+4

Hi, (3.72)

where the last inequality can be taken crudely. We then show (3.69). Similarly, combining
with (3.66), it suffices to show that

L∑
i=m+3

Gi + 2 ≤
L∑

i=m+4

Hi. (3.73)

If m+ 3 ≥ 2(L−m), then

L∑
i=m+4

Hi =
L∑

i=m+4

(
Hi−1 +

i−L+m+1∑
j=1

Hj + 1

)

≥
L∑

i=m+4

(Hi−1 +Hi−L+m+2) (Brown’s criterion for the first terms)

=
L−1∑

i=m+3

Hi +
m+2∑

i=2m+6−L

Hi ≥
L−1∑

i=m+3

(Gi+1 + 1) +Hm+2

≥
L∑

i=m+3

Gi + 2. (3.74)

If m+ 3 < 2(L−m), then

L∑
i=m+3

Gi =

2(L−m)−1∑
i=m+3

Gi +G2(L−m) +
L∑

i=2(L−m)+1

Gi

=

2(L−m)−1∑
i=m+3

(Hi−1 + 1) +H2(L−m)−1 +
L∑

i=2(L−m)+1

Gi

=

2(L−m)−1∑
i=m+2

Hi + (2L− 3(m+ 1)) +
L∑

i=2(L−m)+1

Gi. (3.75)

Thus, our original inequality (3.69) holds if we can show that

Hm+2 +Hm+3 + (2L− 3(m+ 1)) +
L∑

i=2(L−m)+1

Gi ≤
L∑

i=2(L−m)

Hi. (3.76)
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Similarly to the previous case,

L∑
i=2(L−m)

Hi ≥
L∑

i=2(L−m)

(Hi−1 +Hi−L+m+2)

=
L−1∑

i=2(L−m)−1

Hi +
m+2∑

i=L−m+2

Hi

=
L−1∑

i=2(L−m)

Hi +H2(L−m)−1 +Hm+2 +
m+1∑

i=L−m+2

Hi. (3.77)

As 2(L−m)− 1 ≥ m+ 3 and Hi ≥ i,

L∑
i=2(L−m)

Hi ≥
L−1∑

i=2(L−m)

(Gi+1 + 1) +Hm+3 +Hm+2 +
m+1∑

L−m+2

i

=
L∑

i=2(L−m)+1

Gi +Hm+3 +Hm+2 +

(
2m− L+

m+1∑
i=L−m+2

i

)
. (3.78)

From Lemma C.11,

L∑
i=2(L−m)

Hi ≥
L∑

i=2(L−m)+1

Gi +Hm+3 +Hm+2 + (2L− 3(m+ 1)). (3.79)

4 An analytical approach

4.1 An introduction to principal roots

We begin by restating some results from Martinez, Miller, Mizgerd, Murphy, and Sun [8].

Lemma 4.1. Let P (x) be the characteristic polynomial of a recurrence relation with non-
negative coefficients and at least one positive coefficient. Let S = {m | cm 6= 0}. Then

1. there exists exactly one positive root r, and this root has multiplicity 1,

2. every root z ∈ C satisfies |z| ≤ r, and

3. if gcd(S) = 1, then r is the unique root of greatest magnitude.

Proof. This is Lemma 2.1 from Martinez, Miller, Mizgerd, Murphy, and Sun [8].
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Remark 4.2. We refer to the unique positive root from Lemma 4.1 as the principal root of
the recurrence sequence and corresponding characteristic polynomial.

Lemma 4.3. Let P (x) be the characteristic PLRS (Hn) and let r1 be its principal root. Then

lim
n→∞

Hn

rn1
= C (4.1)

for some constant C > 0.

Proof. Corollary 2.3 from Martinez, Miller, Mizgerd, Murphy, and Sun [8] proves a stronger
result than this, which immediately implies this lemma.

Lemma 4.4. Let P (x) be the characteristic polynomial of a PLRS (Hn) with roots ri, each
of multiplicity mi, where r1 is the principal root. If

Hn = a1r
n
1 +

k∑
i=2

qi(n)r
n
i , (4.2)

where qi(x) is a polynomial of degree at most mi − 1, then a1 > 0.

Proof. First, note that the set S of Lemma 4.1 contains 1 because c1 > 0 in a PLRS.
Therefore gcd(S) = 1, and r1 is the unique root of greatest magnitude. If a1 < 0, then
this implies that Hn < 0 for some n because the behavior of a1rn1 eventually dominates the
expression for Hn in (4.2). If a1 = 0, then

lim
n→∞

Hn

rn1
= 0 (4.3)

because r1 is the unique root of greatest magnitude, so if a1 = 0 then the behavior of Hn is
bounded by geometric growth of the root of next greatest magnitude, which is necessarily
smaller than rn1 . Thus, a1 > 0.

4.2 Applications to completeness

Given these results, we see that the principal root of a PLRS serves as a measure for the rate
of that sequence’s growth. Guided by the simple heuristic that, generally, a sequence which
grows slowly is more likely to be complete than a sequence which grows rapidly, we find
bounds for the potential roots of a complete or incomplete PLRS. We aim to answer these
questions: for any given L, what is the fastest-growing complete PLRS with L coefficients?
What is the slowest-growing incomplete PLRS with L coefficients? While the principal root
of a PLRS has not been related to completeness before, there is previous work on bounding
the principal root of other linear recurrence sequences by Gewurz and Merola [6].

Lemma 4.5. If (Hn) is a complete PLRS and r1 is its principal root, then |r1| ≤ 2.
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Proof. Suppose that |r1| > 2. Set

Hn = a1r
n
1 + q2(n)r

n
2 + · · ·+ qr(n)r

n
k . (4.4)

Since r1 is the unique root of largest magnitude by Lemma 4.1, the behavior of a1rn1 dominates
in the limit. By Lemma 4.4, a1 > 0, so if |r1| > 2, then eventually |a1rn1 | > 2n−1, and so
there exists a large n for which Hn > 2n−1. As the sequence (2n−1) is the complete PLRS
with maximal terms by Theorem 2.1, we see (Hn) must be incomplete.

Remark 4.6. The converse to this lemma does not hold. A counterexample is [1, 1, 1, 0, 4],
which has principal root 2 but is not complete.

While the proof is simple, this lemma gives us an effective upper bound for the roots of
a complete PLRS, regardless of length. Recall from Theorem 1.11 that for any L, the PLRS
(Hn) generated by the coefficients [1, . . . , 1︸ ︷︷ ︸

L−1

, 2] satisfies Hn = 2n−1. This sequence naturally

has a principal root of 2, and is complete. Similarly, for any L ≥ 1, the sequence [1, . . . , 1︸ ︷︷ ︸
L

]

is complete, and its principal root asymptotically approaches 2 as L grows.
We now focus on finding a lower bound for the roots of an incomplete sequence, which

proves to be a more difficult problem.

Lemma 4.7. For any L ∈ Z>0, there exists a constant BL, with 1 < BL < 2 such that if
(Hn) is a PLRS with principal root r1 and r1 < BL, then (Hn) is complete.

Remark 4.8. This means that for any L, there exists a lower bound BL on possible values of
the principal root of an incomplete PLRS generated by [c1, . . . , cL].

Proof. In order to show that such a BL exists, it suffices to show that for any given L,
there exists only finitely many incomplete positive linear recurrence sequences generated by
[c1, . . . , cL] with principal root r1 < 2.

Recall that the principal root r1 of a PLRS is the single positive root of the characteristic
polynomial p(x) = xL −

∑L
i=1 cix

L−i. As limx→∞ p(x) = +∞, the fact that r1 is the unique
positive root of p(x) implies that r1 < 2 ⇐⇒ p(2) > 0, by intermediate value theorem.
Note that

p(2) = 2L −
L∑
i=1

ci2
L−i > 0 ⇐⇒

L∑
i=1

ci2
L−i < 2L. (4.5)

As for all i, ci ≥ 0, so the inequality above cannot hold if there exists i such that ci ≥ 2i. As
the set {[c1, . . . , cL] : 0 ≤ ci ≤ 2i for all i} of such sequences is finite, we are done.

The remainder of this section is a series of lemmas which build towards the following
conjecture:
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Conjecture 4.9. Let NL = dL(L+ 1)/4e, and let λL be the principal root of the sequence
generated by [1, 0, . . . , 0︸ ︷︷ ︸

L−2

, NL + 1], i.e., the sole principal root of

pL(x) = xL − xL−1 −
⌈
L(L+ 1)

4

⌉
− 1. (4.6)

Then, if [c1, . . . , cL] generates an incomplete sequence, then its principal root is at least λL;
in other words, the incomplete sequence of length L with the smallest possible principal root
is precisely [1, 0, . . . , 0︸ ︷︷ ︸

L−2

, NL + 1].

Remark 4.10. This conjecture is equivalent to stating BL = λL for all L ≥ 2, where BL is
the bound proposed in Lemma 4.7.

Remark 4.11. By using Theorem 1.15, it is easy to see that the sequence generated by
[1, 0, . . . , 0, NL + 1] is incomplete; in fact, the value NL + 1 is the minimal positive integer
such that a sequence of this form is incomplete.

As a first step towards a proof of Conjecture 4.9, we prove Lemma 4.15, which addresses
the case of sequences with a large sum in coefficients.

Definition 4.12. For positive integers S, L, we define the set of positive linear recurrence
sequences

PL,S :=

{
(Hn) generated by [c1, · · · , cL]

∣∣∣∣ L∑
i=1

ci = S + 1

}
. (4.7)

Lemma 4.13. The sequence in PL,S with the minimal principal root is [1, 0, . . . , 0, S].

Proof. Consider a sequence generated by s = [c1, . . . , cL] ∈ PL,S, and let r1, . . . , rL be its
roots, with r1 > 0 the principal root. Since |cL| =

∣∣∏L
i=1 rL

∣∣ is a positive integer, we know
r1 > 1. Now, for any 1 ≤ m ≤ L consider a sequence generated by sm ∈ PL,S of the form

[c1, . . . , cm−1, cm − 1, cm+1, . . . , cL + 1]. (4.8)

We claim that the principal root q1 of sm fulfills q1 < r1.
Define the characteristic polynomials f(x) and g(x) for s and sm, respectively, so that

f(x) = xL −
L∑
i=1

cix
L−i, (4.9)

and

g(x) = xL −
m−1∑
i=1

cix
L−i − (cm − 1)xm −

L−1∑
i=m+1

cicix
L−i − (cL + 1)
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= xL −
L∑
i=1

cix
L−i + xm − 1. (4.10)

As q1 is the sole positive root of g(x), and g(x) is eventually positive, we notice that
q1 < r1 if and only if g(r1) > 0, which is equivalent to g (r1) > f(r1).

Now,

g (r1) > f (r1) ⇐⇒ rL1 −
∑L

i=1 cir
L−i
1 + rm1 − 1 > rL1 −

∑L
i=1 cir

L−1
1

⇐⇒ rm1 − 1 > 0
⇐⇒ r1 > 1.

(4.11)

As r1 > 1, the principal root q1 of g(x) is strictly less than that of f(x).
As s was chosen arbitrarily, we see that the principal root of any sequence s ∈ PL,S can

be strictly decreased by using the transformation s → sm for any 1 ≤ m ≤ L. Applying
this transformation iteratively for all values of m, we inevitably end up with the minimal
possible values of c1, . . . , cL−1, namely c1 = 1, c2 = c3 = · · · = cL−1 = 0, and the maximal
possible value of cL, namely cL = S.

Thus, as the principal root under these iterated transformations is strictly decreasing, we
conclude that [1, 0, . . . , 0, S] has the smallest principal root of any element of PL,S.

Lemma 4.14. For any S > 0, the principal root of [1, 0, . . . , 0, S] is strictly less than that
of [1, 0, . . . , 0, S + 1].

Proof. Let S be an arbitrary positive integer, and let f(x), g(x) and r1, q1 denote the charac-
teristic polynomials and principal roots of [1, 0, . . . , 0, S+1] and [1, 0, . . . , 0, S], respectively.

As before, q1 < r1 if and only if g(r1) > 0 = f(r1). Note that

g(r1) > f(r1) ⇐⇒ rL1 − rL−11 − S > rL1 − rL−11 − (S + 1)
⇐⇒ S + 1 > S.

(4.12)

Thus, q1 < r1, for any value of S.

Lemma 4.15. Any sequence fulfilling
∑L

i=1 ci ≥ NL +2 has a principal root greater than or
equal to that of

[1, 0, . . . , 0, NL + 1]. (4.13)

Proof. Recall from Theorem 1.15 that the sequence [1, 0, . . . , 0, N ] is complete if and only if
N ≤ NL, for NL = dL(L+ 1)/4e. Thus, an immediate corollary to Theorem 1.15 is that the
incomplete sequence of the form [1, 0, . . . , 0, N ] with the minimal possible principal root is
[1, 0, . . . , 0, NL + 1].

Furthermore, if we have a sequence generated by [c1, . . . , cL] which fulfills
∑L

i=1 ci ≥
NL+2, Lemmas 4.13 and 4.14 present a sequence of algorithms which allow us to transform
this sequence into the sequence generated by [1, 0, . . . , 0, NL + 1], in such a way that each
transformation strictly lowers the magnitude of the principal root.

Thus, any sequence satisfying
∑L

i=1 ci ≥ NL+2 has a principal root strictly greater than
the principal root of [1, 0, . . . , 0, NL + 1].
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The following lemmas are working towards proving Conjecture 4.21, which addresses the
second case of Conjecture 4.9, which addresses the roots of sequences [c1, . . . , cL] which fulfill∑L

i=1 ci ≤ NL + 2.

Lemma 4.16. Suppose the sequence generated by [c1, . . . , cL] has principal root r, then for
any cL+1 ∈ Z>0, the sequence generated by [c1, . . . , cL, cL+1] (in which we add an additional
positive coefficient) with principal root q fulfills r < q.

Proof. Let f(x), g(x) be the characteristic polynomials of the two sequences, so that

f(x) = xL −
L∑
i=1

cix
L−i and g(x) = xL+1 −

L∑
i=1

cix
L+1−i − cL+1. (4.14)

Similar to previous arguments, by the intermediate value theorem, r < q if and only if
g(r) < f(r) = 0. Note that

g(r) < f(r) ⇐⇒ rL+1 −
∑L

i=1 cix
L+1−i − cL+1 < rL −

∑L
i=1 cir

L−i

⇐⇒ cL+1 > rL+1 − rL +
∑L

i=1 cir
L−i −

∑L
i=1 cir

L+1−i

⇐⇒ cL+1 > rL (r − 1) +
∑L

i=1 cir
L−i (1− r)

⇐⇒ cL+1 > (1− r)
(
rL −

∑L
i=1 cir

L−i
)
= (1− r) · f(r)

⇐⇒ cL+1 > (1− r) f(r) = (1− r) · 0 = 0.

(4.15)

Since cL+1 ∈ Z>0, the last line holds. It follows immediately that r < q.

Lemma 4.17. Let λL be the principal root of

xL − xL−1 −NL − 1. (4.16)

Then, for any L ≥ 2, λL > λL+1.

Proof. We let f(x) and g(x) denote the characteristic polynomials of [1, 0, . . . , 0, NL+1] and
[1, 0, . . . , 0, NL+1 + 1], of length L and L+ 1, respectively. This way we obtain

f(x) = xL − xL−1 −NL − 1, g(x) = xL+1 − xL −NL+1 − 1. (4.17)

As in previous proofs, we see that λL > λL+1 ⇐⇒ g (λL) > f (λL) = 0.

g (λ) > f (λ) ⇐⇒ λL+1 − λL −NL+1 − 1 > λL − λL−1 −NL − 1
⇐⇒ λL+1 − 2λL + λL−1 > NL+1 −NL

⇐⇒ λL−1 (λ− 1)2 > NL+1 −NL.
(4.18)

Note that when f (λ) = 0, we have λL−1 (λ− 1) = NL+1. Moreover, NL+1−NL ≤ (L+2)/2,
which can be shown by using the definition of NL and checking all cases modulo 4. Thus, it
suffices to show that

(NL + 1) (λL − 1) ≥ L+ 2

2
. (4.19)
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Now, using the value of NL, all we need to show is

(λL − 1) ≥ L+ 2

L2 + L+ 4
. (4.20)

The proof of (4.20) is just algebra, and is left to Appendix D, as Lemma D.1.

Lemma 4.18. For any L ∈ N, let λL be the sole positive root of the polynomial

pL(x) = xL − xL−1 −
⌈
L(L+ 1)

4

⌉
− 1. (4.21)

Then, limL→∞ λL = 1.

Proof. We show that for any ε > 0, there exists an M large enough so that for all L > M ,
pL(1+ ε) > 0. As pL(x) has only one positive root λL and p(x) is positive as x→∞, we see
pL(1 + ε) > 0 implies λL < 1 + ε. If this is possible for arbitrary ε, then λL → 1 as desired.

Let us fix an ε > 0. For any L, we may write

pL(1 + ε) = (1 + ε)L − (1 + ε)L−1 −
⌈
L(L+ 1)

4

⌉
− 1

=
L∑

n=0

εn
((

L

n

)
−
(
L− 1

n

))
−
⌈
L(L+ 1)

4

⌉
− 1, (4.22)

where
(
L−1
L

)
is 0. Using Pascal’s rule, we can reduce (4.22) to

pL (1 + ε) =
L∑

n=1

εn
(
L− 1

n− 1

)
− dL(L+ 1)/4e − 1. (4.23)

The quantity from (4.23) can easily be shown to be positive (and in fact tends towards
infinity) for large enough L. For example, we can take the trivial bound

L∑
n=1

εn
(
L− 1

n− 1

)
> ε4

(
L− 1

3

)
, (4.24)

as the full sum must be larger than only its fourth summand.
Since ε4 is simply a positive constant and L(L+ 1)�

(
L−1
3

)
, then for large enough L,

pL(1 + ε) > ε4
(
L− 1

3

)
− dL(L+ 1)/4e − 1 > 0. (4.25)
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Remark 4.19. Even in the event that Conjecture 4.9 is false, this gives us conclusive proof
that we may find incomplete sequences whose roots are arbitrarily close to 1. Since 1 is the
minimum possible size for the root of a PLRS, this may be interpreted as proof that we may
find arbitrarily slow-growing incomplete sequences, with coefficients of any length L.

Lemma 4.20. Consider the sequence generated by [c1, . . . , cL]. For any value m ∈ Z>0, the
principal root of [c1, . . . , cL +m] is greater than that of [c1, . . . , cL,m].

Proof. Let f(x), g(x) be the characteristic polynomials and r, q be the principal roots of
[c1, . . . , cL +m] and [c1, . . . , cL,m], respectively. Since each of f and g has a unique positive
root, we see that r > q ⇐⇒ g(r) > f(r) = 0. Note that

g(r) > 0 ⇐⇒ 0 = rf(r) < g(r)

⇐⇒ r
(
rL −

∑L
i=1 cir

L−i −m
)
< rL+1 −

∑L
i=1 cir

L+1−i −m
⇐⇒ m < rm
⇐⇒ r > 1.

(4.26)

Thus, the inequality always holds, and so r > q, as desired.

Conjecture 4.21. Let λL be the principal root of xL − xL−1 − NL − 1. If the sequence
generated by [c1, . . . , cL] is incomplete with

∑L
i=1 ci ≤ dL(L+ 1)/4e + 2, then its principal

root is at least λL.

We present a partial proof, which addresses all cases except what is denoted as Subcase
2.

Partial proof. We use induction.
For L = 2, NL = d2 · 3/4e = 2, and so the coefficients [c1, c2] fulfilling the requirement

are of the form c1 + c2 ≤ 4. The incomplete sequences of this form have coefficients [2, 1],
[2, 2], [1, 3], and [3, 1]. Checking each case directly, we see that their principal roots are
approximately 2.414, 2.731, 2.303, and 3.303, respectively. Among these roots, the root of
[1, 3] = [1, N2 + 1] is the minimum; thus, the lemma holds for the base case.

Now, suppose the Lemma holds for some value of L ≥ 2. We show that the Lemma holds
for L+ 1 as well.

Let [c1, . . . , cL, cL+1] be an incomplete sequence with
∑L+1

i=1 ci ≤ d(L+ 1)(L+ 2)/4e+ 2.

Case 1:
∑L

i=1 ci < NL + 2.

Under the condition above, the following two sub-cases arise.

Sub-Case 1: [c1, . . . , cL] is incomplete.
If the sequence is incomplete, then, by our inductive hypothesis, since∑L

i=1 ci ≤ NL+2, we must have that the principal root r of [c1, . . . , cL] is
greater than or equal to λL. Hence, by Lemma 4.16, since the principal
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root q of [c1, . . . , cL+1] satisfies q > r, we have that [c1, . . . , cL+1] has
principal root q > λL. Finally, by Lemma 4.17, we know that λL >
λL+1. Therefore, we have q > r ≥ λL > λL+1, and the statement holds
in this case.

Sub-Case 2: [c1, . . . , cL] is complete:
The proof of this sub-case has not been found yet, hence why the
statement remains a conjecture.

Case 2:
∑L

i=1 ci ≥ NL + 2.

If this inequality holds, the transformations developed in Lemmas 4.13 and 4.14,
imply that [c1, . . . , cL] has principal root of at least λ. Applying Lemma 4.16, we see
that the principal root of [c1, . . . , cL+1] is strictly greater, and thus the statement
holds in this case.

The results in this section provide us with an efficient way to verify completeness for
PLRS’s. Namely, for a sequence [c1, . . . , cL], we may evaluate its characteristic polynomials
at the points BL and 2, which provides the following information:

• If p(2) < 0, the sequence is incomplete.

• If p(BL) > 0, the sequence is complete.

• If p(2) ≥ 0 and p(BL) ≤ 0, then the principal root of the sequence lies in the inter-
val [BL, 2], and so further inquiry is necessary to determine whether the sequence is
complete.

Computationally, evaluating a polynomial of degree L is an O(L2) problem. Generating
a minimum of 2L terms of the sequences and checking Brown’s criterion for each, on the
other hand, is a O(2L) problem. Thus, this method—even if inconclusive—provides fast and
efficient method to categorize sequences, and narrows our search to the interesting interval
[BL, 2], in which both complete and incomplete sequences arise.

4.3 Denseness of incomplete roots

Having narrowed our search for principal roots of complete and incomplete sequences to the
interval [BL, 2], it is only natural to ask how the roots of these sequences are distributed
throughout the interval.

Lemma 4.22. For fixed L > 2 and k > 0, define the three polynomials f(x) = xL−xL−1−k,
g(x) = xL − xL−1 − (k + 1), and h(x) = xL − xL−1 − (k + 2). Let q, r, and s be the sole
positive roots of f, g, and h respectively, so that 1 < q < r < s. Then,

r − q > s− r. (4.27)
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Proof. From the definition of f, g, and h, we see that

qL − qL−1 = k,

rL − rL−1 = k + 1,

sL − sL−1 = k + 2. (4.28)

Now, define the polynomial p(x) = xL−xL−1. Taking the first and the second derivative
of p, we see p′(x) = LxL−1−(L− 1)xL−2, and p′′(x) = L (L− 1)xL−2−(L− 1) (L− 2)xL−3.
In particular, for all x ≥ 1, p(x) ≥ 0, p′(x) > 0, and p′′(x) > 0.

Thus, p(x) is increasing and convex on (1,∞). By (4.28), we have p(r)−p(q) = p(s)−p(r).
Thus, since s > r > q > 1, we conclude r − q > s− r, as desired.

Theorem 4.23. For any L ≥ 2, let RL be the set of roots of all incomplete PLRS’s generated
by L coefficients. Then, for any ε > 0, there exists an M such that for all L > M and for
any ε-ball Bε ⊂ (1, 2), Bε ∩RL 6= ∅.

Proof. Let ε > 0 be arbitrary. By Lemma 4.18, we may fix an M such that for all L > M ,
1 < λL < 1 + ε.

From our previous work, we know that the sequence of length L that has coefficients
[1, 0, . . . , 0, dL (L+ 1) /4e + 1] is incomplete, as is any sequence of the form [1, 0, . . . , 0, k],
with k ≥ dL (L+ 1) /4e+ 1.

Note that λL is the root of [1, 0, . . . , 0, dL (L+ 1) /4e + 1]. Since λL < 1 + ε, it is clear
that the root α of [1, 0, . . . , 0, dL (L+ 1) /4e] fulfills 1 < α < λL, and so λ− α < ε.

Now, we know the sequence [1, 0, . . . , 0, 2L−1] has a root of size exactly 2. Apply-
ing Lemma 4.22 iteratively, any two sequences [1, 0, . . . , 0, k], [1, 0, . . . , 0, k + 1] with k ≥
dL (L+ 1) /4e and roots q, r must fulfill r − q < λL − α < ε. Thus, any two consecu-
tive sequences [1, 0, . . . , 0, k], [1, 0, . . . , 0, k + 1] with k ≥ dL (L+ 1) /4e + 1 have roots with
separation less than ε, and so the set of roots of sequences of the form [1, 0, . . . , 0, k] with
dL (L+ 1) 4e+1 ≤ k ≤ 2L−1 intercepts any ε-ball of (1, 2). As this is a subset of RL, we are
done.

Corollary 4.24. The set of principal roots of incomplete sequences R =
⋃∞

L=2RL is dense
in (1, 2).

We conjecture that a similar result can be shown about complete roots; however, this
proof has proven to be more difficult, as examples of families of complete sequences are more
fragile.

5 Open questions
Here are conjectures and several other questions that future research could investigate.

• Our results often focus on the final coefficient, such as in Theorems 1.13 and 1.14. Do
these results have any analogues for coefficients that are not the last?
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• Can Theorem 1.17 be extended to address what happens when g < k?

• Are there any other interesting families of PLRS’s that can be fully characterized that
have entries other than 0 and 1 as coefficients that are not the final coefficient?

• Are Conjectures 3.1 and 3.6 true?

• Is the missing component of the proof of Conjecture 4.9, i.e., Conjecture 4.21 true?
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A Brown’s criterion and a corollary
Here are several proofs of important results for our paper. All results will be restated for
the reader’s convenience.

Theorem A.1. (Brown [3]) If an is a non-decreasing sequence, then an is complete if and
only if a1 = 1 and for all n > 1,

an+1 ≤ 1 +
n∑

i=1

ai. (A.1)

Proof. Let (an)
∞
n=1 be a sequence of positive integers, not necessarily distinct, such that

a1 = 1 and

an+1 ≤ 1 +
n∑

i=1

ai (A.2)

for n ≥ 1. Then, for 0 < n < 1 +
∑k

i=1 ai, there exists (bi)
k
i=1, bi ∈ {0, 1} such that

n =
∑k

i=1 biai. We proceed by induction on k. The claim trivially holds for k = 1, so one
may assume that the claim holds for k = N as well. Hence, we must show that 0 < n <
1 +

∑N+1
i=1 ai implies the existence of (εi)

N+1
i=1 , εi ∈ {0, 1} such that n =

∑N+1
i=1 εiai. Due to

the inductive hypothesis, we only consider values satisfying

1 +
N∑
i=1

ai ≤ n < 1 +
N+1∑
i=1

ai. (A.3)

Note that by assumption,

n− aN+1 ≥ 1 +
N∑
i=1

ai − aN+1 ≥ 0. (A.4)
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Now, if n− aN+1 = 0, the conclusion follows. Otherwise,

0 < n− aN+1 < 1 +
N∑
i=1

ai (A.5)

implies the existence of (bi)
N
i=1 such that n−aN+1 =

∑N
i=1 biai. Then the result is immediate

on transposing aN+1 and identifying εi = bi for i ∈ {1, . . . , N} and εN+1 = 1. This completes
the sufficiency part of the proof.

For the necessity, assume that there exists n0 ≥ 1 such that an0+1 ≥ 1 +
∑n0

i=1 ai. Then,
however,

an0+1 > an0+1 − 1 >

n0∑
i=1

ai, (A.6)

which implies that the positive integer an0+1−1 cannot be represented in the form
∑k

i=1 biai.
This leads to a contradiction and completes the proof.

Corollary A.2. If an is a nondecreasing sequence such that a1 = 1 and an ≤ 2an−1 for all
n ≥ 2, then an is complete.

Proof. We argue by induction on n that an satisfies Brown’s criterion when n ≥ 2. As a1 = 1,
for the base case we have

a2 ≤ 2a1 = 2 = a1 + 1. (A.7)

Now assume for inductive hypothesis that for some n ≥ 2,

an ≤ an−1 + · · ·+ a1 + 1. (A.8)

Then
an+1 ≤ 2an = an + an ≤ an + an−1 + · · ·+ a1 + 1, (A.9)

completing the induction.

Example A.3. The converse does not hold. A sequence may be complete and have some
terms that are larger than the double of the previous term. One such example is the sequence
generated by [1, 0, 1, 4], whose terms are (1, 2, 3, 5, 11, . . . ). Here, 11 is more than twice 5,
yet the sequence is still complete.

B Lemmas for Section 2
Lemma B.1. Let (Gn), (Hn) be the sequences defined by [c1, . . . , cL], [c1, , . . . , cL, cL+1],
respectively, where cL+1 is any positive integer. For all k ≥ 2,

HL+k −GL+k ≥ 2 (HL+k−1 −GL+k−1) . (B.1)
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Proof. We use strong induction.
We begin with the base case. First, recall that for all n such that 1 ≤ n ≤ L, we know

Hn = Gn. Further, note that

HL+1 = c1HL + · · ·+ cLH1 + 1 = c1GL + · · ·+ cLG1 + 1 = GL+1 + 1. (B.2)

Using this fact, we compute

HL+2 = c1HL+1 + c2HL + · · ·+ cLH2 + cL+1H1

= c1 (GL+1 + 1) + c2GL + · · ·+ cLG2 + cL+1

= GL+1 + c1 + cL+1. (B.3)

Thus, we have that

HL+2 −GL+2 = c1 + cL+1 ≥ 2 = 2(1) = 2 (HL+1 −GL+1) . (B.4)

For the inductive step, suppose for some m, the lemma holds for all 2 ≤ k ≤ m − 1. We
wish to show the Lemma holds for m, i.e.,

HL+m −GL+m ≥ 2 (HL+m−1 −GL+m−1) . (B.5)

Expanding the terms using the recurrence definition, we see

HL+m −GL+m ≥ 2 (HL+m−1 −GL+m−1) , (B.6)

which holds if and only if

L∑
i=1

ciHL+m−i −
L∑
i=1

ciGL+m−i ≥ 2

(
L∑
i=1

ciHL+m−1−i −
L∑
i=1

ciGL+m−1−i

)
. (B.7)

Note that for all i ≥ m, HL+m−i−GL+m−i = 0. We cancel out any such terms on both sides
of the inequality above, simplifying to

min(m−1,L)∑
i=1

ci (HL+m−i −GL+m−i) ≥
min(m−1,L)∑

i=1

2ci (HL+m−1−i −GL+m−1−i) . (B.8)

Note that for m− 1 ≤ L, we preserve the term 2cm−1 (HL −GL) = 0 in the right hand side
sum, so that both sides of the inequality have the same number of summands.

By our inductive hypothesis, we see that for all i,

ci(HL+m−i −GL+m−i) ≥ 2ci (HL+m−1−i −GL+m−1−i) . (B.9)

Thus, inequality (B.8) holds, which completes the proof.
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Lemma B.2. Consider sequences (Gn) = [c1, c2, . . . , cL] and (Hn) = [c1, c2, . . . , kL], where
1 ≤ kL ≤ cL. For all k ∈ N,

HL+k+1 − 2HL+k ≤ GL+k+1 − 2GL+k. (B.10)

Proof. We proceed by strong induction on k. For k = 1, we have

HL+2 − 2HL+1 = (c1HL+1 + c2HL + · · ·+ kLH2)− 2 (c1HL + c2HL−1 + · · ·+ kLH1)

= (c1HL+1 + c2GL + · · ·+ kLG2)− 2 (c1GL + c2GL−1 + · · ·+ kLG1)

= GL+2 − (GL+1 −HL+1)− (2cL − 2kL)− 2GL+1 − 2 (cL − kL)
≤ GL+2 − 2GL+1. (B.11)

Assume the statement holds true for a natural number k. Now, note

HL+k+2 − 2HL+k+1

= (c1HL+k+1 + c2HL+k + · · ·+ kLHk+2)− 2 (c1HL+k + c2HL+k−1 + · · ·+ kLHk+1)

= c1 (HL+k+1 − 2HL+k) + c2 (HL+k − 2HL+k−1) + · · ·+ kL (Hk+2 − 2hk+1)

≤ c1 (HL+k+1 − 2HL+k) + c2 (HL+k − 2HL+k−1) + · · ·+ cL (Hk+2 − 2Hk+1) . (B.12)

By the inductive hypothesis,

≤ c1 (GL+k+1 − 2GL+k) + c2 (GL+k − 2GL+k−1) + · · ·+ cL (Gk+2 − 2Gk+1)

= GL+k+2 − 2GL+k+1. (B.13)

Therefore, the statement holds by induction.

Lemma B.3. Let (Gn) be the sequence defined by [c1, . . . , cL], and let (Hn) be the sequence
defined by [c1, . . . , cL−1 + 1, cL − 1]. Then, for all k ≥ 0,

HL+k+1 −GL+k+1 ≥ 2 (HL+k −GL+k) . (B.14)

Proof. We use strong induction. We begin with the base case. First, since the first L − 2
coefficients of (Gn) , (Hn) are equivalent, we have that for all 1 ≤ n ≤ L− 1, Gn = Hn. We
also see that

HL = c1HL−1+· · ·+(cL−1 + 1)H1+1 = c1GL−1+· · ·+(cL−1 + 1)G1+1 = GL+G1 = GL+1.
(B.15)

Moreover,
HL+1= c1HL + · · ·+ (cL−1 + 1)H2 + (cL − 1)H1

= c1 (GL + 1) + · · ·+ (cL−1 + 1)G2 + (cL − 1)G1

= c1 +G2 −G1 +
∑L

i=1 ciGL+1−i
= c1 + c1 +GL+1

= 2c1 +GL+1.

(B.16)
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Thus, we see that

HL+1 −GL+1 = 2c1 ≥ 2 = 2(1) = 2 (HL −GL) , (B.17)

and so the base case holds.
For the induction step, suppose our lemma holds for all 0 ≤ k ≤ m. We wish to show

this holds for m+ 1, so that HL+m+1 −GL+m+1 ≥ 2 (HL+m −GL+m).
Since (Gn) and (Hn) are PLRS, we expand the terms in question using their respective

recurrence relations to see that HL+m+1 −GL+m+1 ≥ 2 (HL+m −GL+m) if and only if

L∑
i=1

ciHL+m+1−i +Hm+2 −Hm+1 −
L∑
i=1

ciGL+m+1−i

≥ 2

(
L∑
i=1

ciHL+m−1 +Hm+1 −Hm −
L∑
i=1

ciGL+m−i

)
. (B.18)

We note that by the induction hypothesis, we have that for all i,

ci (HL+m+1−i −GL+m+1−i) ≥ 2ci (HL+m−i −GL+m−i) . (B.19)

Moreover, Hm+2 −Hm+1 ≥ Hm+1 −Hm, simply because we know that gaps in a PLRS
grow. Combining these two statements, we have that inequality B.18 holds, and so our
inductive step is complete.

Lemma B.4. Let (Gn) be the sequence defined by [c1, . . . , cL−1, 1], and let (Hn) be the se-
quence defined by [c1, . . . , cL−1 + 1]. Then, for all k ≥ 1,

HL+k+1 −GL+k+1 ≥ 2 (HL+k −GL+k) . (B.20)

Proof. The proof is similar to that of Lemma B.3 and so we repeat our use of strong induction.
We begin with the base case. First, since first L − 2 coefficients of (Gn) , (Hn) are

equivalent, we have that for all 1 ≤ n ≤ L − 1, Gn = Hn. In fact, even more can be said:
GL = HL, as

HL = c1HL−1 + · · ·+ (cL−1 + 1)H1 = c1GL−1 + · · ·+ (cL−1 + 1)G1 = (GL − 1) +G1 = GL.
(B.21)

Hence,

HL+1 = c1HL + · · ·+ (cL−1 + 1)H2 = c1GL + · · ·+ (cL−1 + 1)G2

= GL+1 −G1 +G2 = GL+1 − (1) + (c1 + 1) = GL+1 + c1. (B.22)

And so we see that
HL+1 −GL+1 = c1 > 0 = 2 (HL −GL) . (B.23)
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For the induction step, suppose for some m that our lemma holds for all 0 ≤ k ≤ m. We
wish to show this holds for m+ 1, so that HL+m+1 −GL+m+1 ≥ 2 (HL+m −GL+m).

Since (Gn) and (Hn) are PLRS, we expand the terms in question using their respective
recurrence relations. On this basis, we can claim thatHL+m+1−GL+m+1 ≥ 2 (HL+m −GL+m)
if and only if

L−1∑
i=1

ciHL+m+1−i +Hm+2 −
L−1∑
i=1

ciGL+m+1−i −Gm+1

≥ 2

(
L−1∑
i=1

ciHL+m−i +Hm −
L∑
i=1

ciGL+m−i −Gm−1

)
. (B.24)

By the induction hypothesis, we have that for all i,

ciHL+m+1−i − ciGL+m+1−i ≥ 2 (ciHL+m−i −GL+m−i) . (B.25)

However, we can also show that Hm+2 − Gm+1 ≥ 2 (Hm+1 −Gm). By rewriting this as
Hm+2 − 2Hm+1 ≥ Gm+1 − 2Gm, we see that for m ≤ L − 1, both sides are equal. For
m ≥ L + 1, it suffices to note that (Hn) grows faster, and thus so must the gaps between
consecutive terms. By combining these two observations, the inequality (B.24) holds, which
completes the proof.

C Lemmas for Section 3
Lemma C.1. For the PLRS Hn+1 = Hn +NHn−k−1, with N = d(k + 2)(k + 3)/4e, then

(N − 2)Hn−k−1 ≤ Hn−1 + · · ·+Hn−k. (C.1)

Proof. By strong induction on n. Consider the base case, for n = k + 2: Hn−k−1 = H1 =
1, Hn−k = H2 = 2, . . . , Hn−1 = Hk+1 = k + 1.

(N − 2)Hn−k−1 ≤ Hn−1 + · · ·+Hn−k ⇐⇒ (N − 2) ≤ 2 + 3 + · · ·+ k + (k + 1)

⇐⇒
⌊
(k + 2) (k + 3)

4
+

1

2

⌋
≤ (k + 1) (k + 2)

2
+ 1

⇐= (k + 2) (k + 3) + 2

4
≤ k2 + 3k + 2

2
+ 1

⇐⇒ k2 + 5k + 8 ≤ 2k2 + 6k + 8

⇐⇒ 0 ≤ k2 − k. (C.2)

Hence, the base case holds for k ≥ 0.
For the induction hypothesis, assume the following holds for arbitrary, fixed n:

(N − 2)Hn−k−1 ≤ Hn−1 + · · ·+Hn−k. (C.3)
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For the induction step, we wish to show the following:

(N − 2)Hn−k ≤ Hn + · · ·+Hn−k+1. (C.4)

We write, using the recurrence relation, that

(N − 2)Hn−k = (N − 2)Hn−k−1 +N(N − 2)Hn−2k−2. (C.5)

By applying the induction hypothesis to both terms on the right hand side of the previous
expression, we write

(N − 2)Hn−k ≤ Hn−1 + · · ·+Hn−k +N(Hn−k−2 + · · ·+Hn−2k−1)

=
k∑

i=1

(Hn−i +NHn−k−1−i)

=
k∑

i=1

Hn−i+1. (C.6)

Hence, the claim is true for all n ≥ k + 1, k ≥ 0.

Lemma C.2. For the PLRS (Hn) generated by [1, 1, 0, . . . , 0, N ], if k is the number of zeros
and N = b(fk+6 − (k + 5))/4c, then

(N − 2)Hn−k−2 ≤ Hn−2 + · · ·+Hn−k−1. (C.7)

Proof. In a similar manner to Lemma C.1, the statement is proved by induction on n.
For the base case, n = k+3, so Hn−k−2 = H1 and {Hn−1, . . . , Hn−k−1} = {Hk+2, . . . , H2}.

Hence

(N − 2)H1 ≤ Hk+1 + · · ·+H2 ⇐⇒ (N − 2) ≤ (fk+2 − 1) + · · ·+ (f3 − 1)

⇐⇒ N ≤
k+2∑
i=1

fi − (f1 + f2 + k) + 2

⇐⇒
⌊
fk+6 − (k + 5)

4

⌋
≤ fk+6 − (k + 5)

4
≤ fk+4 − k − 1

⇐⇒ fk+6 − (k + 5) ≤ 4(fk+4 − k − 1)

⇐⇒ fk+5 + fk+4 − 1 ≤ 4fk+4 − 3k

⇐⇒ 3k − 1 ≤ 3fk+4 − fk+5

⇐⇒ 3k − 1 ≤ fk+4 + fk+2, (C.8)

where the last line is true for all k ≥ 1 by induction on k. Now, suppose the statement is
true for some n ≥ k + 3, so that

(N − 2)Hn−k−2 ≤ Hn−2 + · · ·+Hn−k−1. (C.9)
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Thus, for the inductive step, note using the recursive definition and initial conditions that

(N − 2)Hn−k−1 = (N − 2)Hn−k−2 + (N − 2)Hn−k−3 +N(N − 2)Hn−2k−4, (C.10)

where if a sequence index is nonpositive, we just can just generate the terms from indices
0,−1,−2, . . . that satisfy the recurrence. By applying the inductive hypothesis on three
different terms, we write

(N − 2)Hn−k−1 ≤ [Hn−2 + · · ·+Hn−k−1] + [Hn−3 + · · ·+Hn−k−2] +N [Hn−k−4 + · · ·+Hn−2k−3]

=
n−1∑

i=n−k

(Hi−1 +Hi−2 +NHi−k−3)

=
n−1∑

i=n−k

Hi, (C.11)

where the last line follows by use of the recurrence relation, completing the induction on n.
OLD WITH INCORRECT INDEXING FOR REFERENCE:
For the base case, n = k+3, so Hn−k−2 = H1 and {Hn−1, . . . , Hn−k−1} = {Hk+2, . . . , H2}.

Hence

(N − 2)H1 ≤ Hk+2 + · · ·+H2 ⇐⇒ (N − 2) ≤ (fk+3 − 1) + · · ·+ (f3 − 1)

⇐⇒ (N − 2) ≤
k+3∑
i=1

fi − (f1 + f2 + (k + 1))

⇐⇒
⌊
fk+6 − (k + 5)

4

⌋
≤ fk+6 − (k + 5)

4
≤ fk+5 − (k + 4)

⇐⇒ fk+6 − (k + 5) ≤ 4(fk+5 − (k + 4))

⇐⇒ fk+5 + fk+4 ≤ 4fk+5 − 3k + 11

⇐⇒ 3k + 11 ≤ 3fk+5 − fk+4

⇐⇒ 3k + 11 ≤ 2fk+4 + 3fk+3, (C.12)

where the last line is true for all k ≥ 0 by induction on k. Now, suppose the statement is
true for some n ≥ k + 3, so that (N − 2)Hn−k−2 ≤ Hn−2 + · · · + Hn−k−1. Thus, for the
inductive step, note using the recursive definition and initial conditions that

(N − 2)Hn−k−1 ≤ (N − 2)Hn−k−2 + (N − 2)Hn−k−3 +N(N − 2)Hn−2k−4, (C.13)

where for ease of notation we set Hn−2k−4 = 1 if the index is nonpositive; this works because
N is positive and the definition for initial conditions would add 1 instead of N . By the
inductive hypothesis,

(N − 2)Hn−k−1 ≤ Hn−2 + · · ·+Hn−k−1 + (N − 2)Hn−k−3 +N(N − 2)Hn−2k−4
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≤
n−2∑

i=n−k

Hi +Hn−k−1 + (N − 2)Hn−k−3 +N(N − 2)Hn−2k−4. (C.14)

Note for all positive k we have that n − k − 1 ≤ n − 2 as well as n − k − 3 < n − 3
and n − 2k − 4 < n − k − 3. We know that the sequence is non-decreasing, so we can
use these inequalities to get bounds on the terms with corresponding indices in (C.14). If
n − 2k − 4 ≤ 0, then we use the fact that 1 ≤ Hn−k−3. So, since N is a positive integer, it
follows from (C.14) that

(N − 2)Hn−k−1 ≤
n−2∑

i=n−k+1

Hi +NHn−2 +NHn−3 +N(N − 2)Hn−k−3

=
n−2∑

i=n−k+1

Hi +NHn−1 =
n−1∑

i=n−k

Hi, (C.15)

which completes the induction on n.

Lemma C.3.
∑n

i=1 2
i−1i = 2n(n− 1) + 1.

Proof. By induction on n.

Lemma C.4. Define (fn) = [1, . . . , 1︸ ︷︷ ︸
g

] and (Hn) = [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, 2k+1 − 1]. Then

Hg+k+1+n = fg+k+1+n + (2k+1 − 1)(2n + 2n−2(n− 1)) when 1 ≤ n ≤ g − k.

Proof. Define a(n) so that Hg+k+1+n = fg+k+1+n + a(n) for 1 ≤ n ≤ g − k. Now,

Hg+k+1+n = Hg+k+n + · · ·+Hk+1+n + (2k+1 − 1)Hn

=

g+k+n∑
i=k+1+n

fi +
n−1∑
i=1

a(i) +
k+1∑
i=1

2i−1 + (2k+1 − 1)2n−1 (C.16)

(since k+ 1+ n ≤ g+ 1, (Hi− fi) spans all the indices from k+ 1+ n ≤ g+ 1 to g+ k+ n)

= fg+k+n+1 +
n−1∑
i=1

a(i) + (2k+1 − 1)(2n−1 + 1) (C.17)

Therefore,

a(n) =
n−1∑
i=1

a(i) + (2k+1 − 1)(2n−1 + 1) (C.18)

and

a(n− 1) =
n−2∑
i=1

a(i) + (2k+1 − 1)(2n−2 + 1). (C.19)
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Hence
a(n) = 2a(n− 1) + (2k+1 − 1)(2n−2). (C.20)

Since a(1) = 2(2k+1 − 1), by induction we have

a(n) = (2k+1 − 1)(2n + 2n−2(n− 1)). (C.21)

Lemma C.5. Define (fn) = [1, . . . , 1︸ ︷︷ ︸
g

] and (Hn) = [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, 2k+1 − 1. Then fg+n =

2g+n−1 − 2n−2(n+ 1) when 1 ≤ n ≤ g.

Proof. Set fg+n = 2g+n−1 − a(n) for 1 ≤ n ≤ g. Then

fg+n = fg+n−1 + · · ·+ fn

= 2g+n−2 + 2g+n−3 + · · ·+ 2n−1 − (a(n− 1) + · · ·+ a(1))

= 2g+n−1 −

(
2n−1 +

n−1∑
i=1

a(i)

)
(C.22)

Therefore,

a(n) = 2n−1 +
n−1∑
i=1

a(i) (C.23)

and

a(n− 1) = 2n−2 +
n−2∑
i=1

a(i). (C.24)

Hence
a(n) = 2n−1 + 2a(n− 1)− 2n−2 = 2a(n− 1) + 2n−2. (C.25)

Since a(1) = 1, by induction, we have a(n) = 2n−2(n+ 1).

Lemma C.6. For k + dlog2 ke ≤ g < 2k, (Hn) defined as [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

, 2k+1 − 1], we

have

2g+k+1 −
g+k+1∑

i=k+n+2

Hi ≤ 2g + 2k+n+2 − 2n+1 (C.26)

for all g − k ≤ n ≤ k.

Proof. By induction on n. Suppose it holds for some n ≥ g − k. Then

2g+k+1 −
g+k+1∑

i=k+n+3

Hi = 2g+k+1 −
g+k+1∑

i=k+n+2

Hi +Hk+n+2. (C.27)
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By the induction hypothesis,

2g+k+1 −
g+k+1∑

i=k+n+3

Hi ≤ 2g + 2k+n+2 − 2n+1 +Hk+n+2. (C.28)

As we can check explicitly that Hk+n+2 ≤ 2k+n+1 ≤ 2k+n+2 − 2n+1, we see

2g+k+1 −
g+k+1∑

i=k+n+3

Hi ≤ 2g + 2k+n+2 − 2n+1 + (2k+n+2 − 2n+1)

= 2g + 2k+n+3 − 2n+2. (C.29)

It remains to show for the base case n = g − k. This can be shown directly from the given
formulas in Theorem 3.4.

Lemma C.7. For (Hn) defined as in Lemma C.6 and the same conditions on g and k, we
have

H(g+k+1)+n ≥ (2k+1 − 1)(2g+n−1 − 2n−2(n+ 1)) (C.30)

for all 1 ≤ n ≤ k.

Proof. This is equivalent to showing that

2g+k+n −H(g+k+1)+n ≤ 2g+n−1 + 2k+n−1(n+ 1)− 2n−2(n+ 1) for all 1 ≤ n ≤ k, (C.31)

which we proceed by strong induction on n. The case 1 ≤ n ≤ g− k has been established in
Theorem 3.4, so we suppose this holds for all n ≤ m for some g − k ≤ m < k. Then

2g+k+(m+1) −H(g+k+1)+(m+1)

= 2g+k+m+1 −

(
m∑
i=1

H(g+k+1)+i +

g+k+1∑
i=k+m+2

Hi + (2k+1 − 1)Hm+1

)

=
m∑
i=1

(
2g+k+i −H(g+k+1)+i

)
+

(
2g+k+1 −

g+k+1∑
i=k+m+2

Hi

)
− (2k+1 − 1)2m. (C.32)

By the inductive hypothesis and Lemma C.6,

≤
m∑
i=1

(
2g+i−1 + 2k+i−1(i+ 1)− 2i−2(i+ 1)

)
+
(
2g + 2k+m+2 − 2m+1

)
− (2k+1 − 1)2m

= 2g+(m+1)−1 + 2k+(m+1)−1((m+ 1) + 1)− 2(m+1)−2((m+ 1) + 1). (C.33)

Our proof by induction is complete.

Lemma C.8. The sequence generated by [1, . . . , 1, 0, 3], with k ≥ 1 ones, is always complete.
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Proof. By strong induction on n.
A simple calculation can be done to show that Brown’s criterion holds for all m ≤ k+1,

i.e. Hm+1 ≤ 1 +H1 + · · ·+Hm.
For the induction hypothesis, assume that for some n ≥ k + 1, Brown’s criterion holds

for all m < n, i.e., assume Hm+1 ≤ 1 +H1 + · · ·+Hm for all m < n.
For the induction step, we start with the recurrence relation and apply the induction

hypothesis:

Hn+1 = Hn + · · ·+Hn−k+1 + 3Hn−k−1

≤ Hn + · · ·+Hn−k+1 +Hn−k + 2Hn−k−1

≤ Hn + · · ·+Hn−k+1 +Hn−k +Hn−k−1 +Hn−k−2 + · · ·+H1 + 1. (C.34)

Hence, by Brown’s criterion, the sequence is complete. By strong induction, the lemma is
proved.

Lemma C.9. Let (Hn) defined by [1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m

, N ] be a PLRS with L coefficients.

Then, if the sequence is incomplete, it must fail Brown’s criterion at the L+ 1-th or L+ 2-
th term. In other words, if HL+1 ≤ 1 +

∑L
i=1Hi and HL+2 ≤ 1 +

∑L+1
i=1 Hi, then (Hn) is

complete.

Proof. Let (Hn) be defined as above; it is clear that the first L terms pass Brown’s criterion.
Now suppose the sequence passes Brown’s criterion at the L + 1-ist and L + 2-nd term, so
that

HL+1 ≤
L∑
i=1

Hi + 1, HL+2 ≤
L+1∑
i=1

Hi + 1. (C.35)

We show that (Hn) is complete.
We show by induction that if (Hn) satisfies Brown’s criterion at the L+ 2nd term, then

it satisfies Brown’s criterion at the L + kth term, for any 2 ≤ k ≤ L − 1. We assume our
base case of k = 2 by hypothesis, so only the induction step remains to be shown.

Suppose for some k that

HL+k = HL+k−1 +Hk+m + · · ·+Hk+1 +NHk ≤
L+k−1∑
i=1

Hi + 1. (C.36)

We wish to show that

HL+k+1 = HL+k +Hk+m+1 + · · ·+Hk+2 +NHk+1 ≤
L+k∑
i=1

Hi + 1. (C.37)

Looking at the difference between equations (C.36) and (C.37), we see it suffices to show
that

(HL+k −HL+k−1) +N (Hk+1 −Hk) +Hk+m+1 −Hk+1 ≤ HL+k. (C.38)
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Or equivalently,
N (Hk+1 −Hk) +Hk+m+1 −Hk+1 ≤ HL+k−1. (C.39)

Expanding HL+k−1,

HL+k−1 = HL+k−2 +Hk+m−1 + · · ·+Hk +NHk−1. (C.40)

We can repeatedly expand the largest term of expression (C.40), giving us longer partial
sums. In particular, applying the process k times, we see:

HL+k−1 = HL+k−2 +
k+m−1∑
i=k

Hi +NHk−1

=

(
HL+k−3 +

k+m−2∑
i=k−1

Hi +NHk−2

)
+

k+m−1∑
i=k

Hi +NHk−1

=

(
HL+k−3 +

k+m−3∑
i=k−2

Hi +NHk−3

)
+

k+m−2∑
i=k−1

Hi +
k+m−1∑
i=k

Hi +N(Hk−1 +Hk−2)

...

= HL−1 +
m∑
i=1

Hi + · · ·+
k+m−1∑
i=k

Hi +N (Hk−1 +Hk−2 + · · ·+H1)

= HL−1 +
k∑

a=1

a+m−1∑
i=a

Hi +N

(
k−1∑
i=1

Hi

)
. (C.41)

Thus inequality (C.39) becomes

N (Hk+1 −Hk −Hk−1 − · · · −H2 −H1) +Hk+m+1 ≤ HL−1 +Hk+1 +
k∑

a=1

a+m−1∑
i=a

Hi. (C.42)

Assuming k < L, we can write Hk+1 = Hk +Hk−L+m+1 + · · · +Hk−L+2, where for the sake
of notation we define H0 = 1 and Hj = 0 for all j < 0. Thus,

N (Hk+1 −Hk −Hk−1 − · · · −H2 −H1) = −N (Hk−1 +Hk−2 + · · ·+Hk−L+m+2)

< −NHk−1, (C.43)

and so for inequality (C.42) it suffices to show

Hk+m+1 ≤ HL−1 +Hk+1 +
k∑

a=1

a+m−1∑
i=a

Hi +NHk−1. (C.44)

Expanding the left hand side, we wish to show

Hk+m+1 = Hk+m +Hk−L+2m+1 + · · ·+Hk−L+1 +NHk−L+m
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≤ HL−1 +Hk+1 +
k∑

a=1

a+m−1∑
i=a

Hi +NHk−1. (C.45)

As k − L+m ≤ k − 3 < k − 1, we see NHk−L+m < NHk−1, and so we need only show

Hk+m +Hk−L+2m+1 + · · ·+Hk−L+1 ≤ HL−1 +Hk+1 +
k∑

a=1

a+m−1∑
i=a

Hi. (C.46)

As k ≥ 2, we note that in the double sum
∑k

a=1

∑a+m−1
i=a Hi, the summands H1, Hk+m−1 are

present exactly once, and for any 1 < i < k +m − 1, the summand Hi is present at least
twice. Thus we can take the crude bound

k∑
a=1

a+m−1∑
i=a

Hi ≥
k+m−1∑
i=1

Hi +
k+m−2∑
i=2

Hi. (C.47)

Applying this bound on the right hand side of inequality (C.46), and taking the trivial
bounds HL−1 > H1 + 1, Hk+1 > 1, we see

HL−1 +Hk+1 +
k∑

a=1

a+m−1∑
i=a

Hi ≥

(
k+m−1∑
i=1

Hi + 1

)
+

(
k+m−2∑
i=1

Hi + 1

)
. (C.48)

As we assumed (Hn) fulfills Brown’s criterion for terms below L+ k, we know

Hk+m ≤
k+m−1∑
i=1

Hi + 1. (C.49)

Finally, it is clear that

Hk−L+2m+1 + · · ·+Hk−L+1 ≤
k+m−2∑
i=1

Hi + 1, (C.50)

as no indices on the left sum are repeated. Combining these two facts, we have

Hk+m +Hk−L+2m+1 + · · ·+Hk−L+1 ≤

(
k+m−1∑
i=1

Hi + 1

)
+

(
k+m−2∑
i=1

Hi + 1

)

≤ HL−1 +Hk+1 +
k∑

a=1

a+m−1∑
i=a

Hi. (C.51)

Thus inequality (C.46) holds, and we are done.

51



Lemma C.10. Let (Gn) and (Hn) be PLRS’s, both with L coefficients, which are defined
by [1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

m

, N ] and [1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m+1

, N +1] respectively. For (L− 1)/2 ≤ m ≤

L− 4, 
Hi−1 = Gi − 1, if 2 ≤ i < 2(L−m);
Hi−1 = Gi, if i = 2(L−m);
Hi−1 > Gi, if 2(L−m) < i ≤ L.

(C.52)

Proof. From the proof of Lemma 3.9, we get{
Hn = n,H(L−m−1)+n = L−m− 1 + n+ n(n+1)(n+2)

6
, if 1 ≤ n ≤ L−m− 1;

Gn = n,GL−m+n = L−m+ n+ n(n+1)(n+2)
6

, if 1 ≤ n ≤ L−m.
(C.53)

From these explicit formulas, Hi−1 = Gi − 1 for all 2 ≤ i ≤ 2(L−m)− 1. Now,

H2(L−m)−1 = H2(L−m−1) +HL−m +
L−m−1∑

i=1

Hi + 1

= 2(L−m− 1) +
(L−m− 1)(L−m)(L−m+ 1)

6
+ 1 +

L−m−i∑
i=1

Gi + 1

= 2(L−m)− 1 +
(L−m− 1)(L−m)(L−m+ 1)

6
+

L−m−i∑
i=1

Gi + 1

= G2(L−m)−1 +
L−m−i∑
i=1

Gi + 1

= G2(L−m). (C.54)

Similarly, by writing out explicit formulas, one can show that H2(L−m) > G2(L−m)+1. Also,
it is clear that Hi ≥ Gi for all i. Therefore, for any 2(L−m) + 1 < k ≤ L,

Hk−1 −Gk = (Hk−2 −Gk−1) +

k−(L−m)∑
i=1

(Hi −Gi)

≥ Hk−2 −Gk−1, (C.55)

and the last inequality follows by induction on k.

Lemma C.11. If m+ 3 < 2(L−m) and m ≥ (L− 1)/2, then

2m− L+
m+1∑

i=L−m+2

i ≥ 2L− 3(m+ 1) + 2. (C.56)
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Proof. This is equivalent to

(m+ 1)(m+ 2)

2
− (L−m+ 1)(L−m+ 2)

2
≥ 3L− 5m− 1, (C.57)

which simplifies to
L(2m− L) + 16m+ 2 ≥ 8L, (C.58)

which is true since L(2m− L) > 6 and 2m+ 1 ≥ L.

D Lemmas for Section 4
Lemma D.1. For any L ∈ Z>0, let λL be the principal root of xL − xL−1 −NL − 1. Then

λL − 1 ≥ L+ 2

L2 + L+ 4
. (D.1)

Proof. Set f(x) = xL−xL−1−NL−1. It suffices to show that f((L+2)/(L2+L+4)+1) ≤ 0.
For L = 2, NL = d2(2 + 1)/4e = 2, so f(x) = x2 − x− 3. Thus,

f

(
L+ 2

L2 + L+ 4
+ 1

)
= −61

25
< 0, (D.2)

and we now consider L 6= 2. Since 1/(L2 + L+ 4) < 1/(L2 − 4), it suffices to show

λL − 1 ≥ L+ 2

L2 − 4
=

1

L− 2
⇐⇒ λL ≥

L− 1

L− 2
(D.3)

As noted above, it suffices to show f((L− 1)/(L− 2)) ≤ 0. That is,(
L− 1

L− 2

)L

−
(
L− 1

L− 2

)L−1

−
⌈
L(L+ 1)

4

⌉
− 1 ≤ 0 (D.4)(

L− 1

L− 2

)L

−
(
L− 1

L− 2

)L−1

≤
⌈
L(L+ 1)

4

⌉
+ 1. (D.5)

Equality holds for L = 3 and the left hand side is decreasing while the right hand side is
increasing, so (D.5) holds for L ≥ 3. When L = 1, the left hand side is negative while the
right hand side is positive, so we have covered all L ∈ Z>0, completing the proof.
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