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ABSTRACT. A positive linear recurrence sequence (PLRS) is a sequence defined by a ho-
mogeneous linear recurrence relation with positive coefficients and a particular set of initial
conditions. A sequence of positive integers is complete if every positive integer is a sum of
distinct terms of the sequence. One consequence of Zeckendorf’s theorem is that the sequence
of Fibonacci numbers is complete. Previous work has established a generalized Zeckendort’s
theorem for all PLRS’s. We consider PLRS’s and want to classify them as complete or not.
We study how completeness is affected by modifying the recurrence coefficients of a PLRS.
Then, we determine in many cases which sequences generated by coefficients of the form
[1,...,1,0,...,0, N] are complete. Further, we conjecture bounds for other maximal last co-
efficients in complete sequences in other families of PLRS’s. Our primary method is applying
Brown’s criterion, which says that an increasing sequence {H, }n=; is complete if and only if
Hi =1and Hny1 <1437 | H;. This paper is an introduction to the topic that is explored
further in .
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1. INTRODUCTION

Edouard Zeckendorf famously proved that every positive integer can be written uniquely as
a sum of non-consecutive Fibonacci numbers, when indexed {1,2,3,5, ... }; this unique decom-
position is called the Zeckendorf decomposition |Ze]. The property of unique decompositions
has been generalized to a much larger class of linear recurrence relations, called PLRS’s. The

following definitions are from [MW, [BBGILMT].
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Definition 1.1. We say a sequence {H,}72 | of positive integers is a Positive Linear Re-
currence Sequence (PLRS) if the following properties hold:

(1) Recurrence relation: There are non-negative integers L,c1, ..., cr, such that
Hyyy = aHy+- - +cpHpp- 1, (1.1)

with L, c1 and cy, positive.
(2) Initial conditions: Hy =1, and for 1 < n < L we have

Hyyw = ety +cHy 1+ +c,Hy + 1. (1.2)

Definition 1.2 (Legal decompositions). We call a decomposition y ;- aiHpm11—i of a positive
integer N (and the sequence {a;}[",) legal if a1 > 0, the other a; > 0, and one of the following
two conditions holds:

(1) We have m < L and a; = ¢; for 1 <i<m.

(2) There exists s € {1,...,L} such that

ap = ¢, ayg = Co, -+, as_1 = cs—1 and ag < cg, (1.3)
Gst1y---,051¢ = 0 for somel >0, and {bi}g_ls_e (with b; = asyg4;) is legal or empty.
The following theorem is due to [GT], and is stated in this form in [MW].

Theorem 1.3 (Generalized Zeckendorf’s Theorem for PLRS). Let {H,}5°; be a Positive
Linear Recurrence Sequence. Then there is a unique legal decomposition for each positive
integer N > 0.

The goal of this paper is to provide an introduction to the completeness of PLRS’s. This
definition is from [Brl [HK].

Definition 1.4. An arbitrary sequence of positive integers { f;}52, is complete if and only if
every positive integer n can be represented in the form n = > 7, «;f;, where a; € {0,1}. A
sequence that fails to be complete is incomplete.

In other words, a sequence of positive integers is complete if and only if each positive integer
can be written as a sum of unique terms of the sequence. The Fibonacci numbers are a
motivating example.

Example 1.5. The Fibonacci sequence is complete. This sequence, in particular with the
initial conditions given by Definition is the PLRS defined by Hy41 = Hy, + Hy—1, with
Hy, =1, Hy = 2. Here, completeness follows from Zeckendorf’s Theorem, as every positive
integer has a unique decomposition, and critically, no sequence terms are used more than once.
In fact, Zeckendorf’s Theorem is a stronger statement than what is required for completeness.
Completeness does not require the decompositions to be unique, nor that they use only noncon-
secutive terms.

After seeing this example, does Theorem imply that all PLRS’s are complete? Previous
work in numeration systems by Gewurz and Merola [GM] has shown that specific classes of
recurrences as defined by Fraenkel [ET] are complete under their greedy expression. However,
we cannot generalize this result to all PLRS’s. For legal decompositions, the decomposition rule
might permit sequence terms to be used more than once. This is not allowed for completeness
decompositions, where each unique term from the sequence can be used at most once.

Example 1.6. The PLRS H,+1 = H,, + 3H,—1 has terms {1,2,5,11,...}. The unique legal
decomposition for 9 is 1 -5+ 2 -2, where the term 2 is used twice. However, no complete
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decomposition for 9 exists. Adding all terms from the sequence less than 9 is 1 +2 45 = 8,
and to include 11 or any subsequent term surpasses 9.

It is not realistic to check that all terms of an infinite sequence have decompositions that use
each term no more than once. Instead, we make use of the following criterion for completeness
of a sequence, due to [Br]. It allows us to simplify proving completeness for many specific
PLRS’s to induction proofs.

Theorem 1.7 (Brown’s Criterion). If a, is a nondecreasing sequence, then a,, is complete if
and only if a1 =1 and for all n > 1,

n
tnyr < 14> a; (1.4)
=1

In order to quantify how close a sequence is to the upper bound established by Brown’s
criterion, we introduce the following definition.

Definition 1.8. For a sequence {H,}, we define its nth Brown’s gap

n—1
Byp = 1+ Y H;—H,. (1.5)
i=1
Notation 1.9. We use the notation [c1,. .., cr], which is the collection of all L coefficients, to

represent the PLRS Hypi 1 =c1Hp+ -+ crHpy1-1-

A simple case to consider is when all coefficients in [c1, ..., cp] are strictly positive. The fol-
lowing result, proved in Section 2] completely characterizes these sequences are either complete
or incomplete.

Theorem 1.10. If {H,} is a PLRS generated by all positive coefficients [c1,...,cr], then
sequence is complete if and only if the coefficients are [1,...,1] or [1,...,1,2] for L > 1.
—— ——

L L-1

The situation becomes much more complicated when we consider all PLRS’s that have at
least one 0 as a coefficient. In order to be able to make progress on determining completeness
of these PLRS’s, we develop several additional tools. The following three theorems are results
that allow certain modifications of the coefficients [c1,...,cr] that generate a PLRS that is
known to be complete or incomplete, and preserve completeness or incompleteness. They are
proved in Section [2}

Theorem 1.11. Consider sequences {G,} = [c1,...,cr] and {H,} = [c1,,...,cL,cr+1], where
cr+1 18 any positive integer. If {Gp} is incomplete, then {H,} is incomplete as well.

Theorem 1.12. Consider sequences {Gyn} = [c1,...,cp—1,cp] and {H,} = [c1,...,cr—1,kL],
where 1 < kg, <cr. If {G,} is complete, then {Hy} is also complete.

Theorem 1.13. Consider sequences {G,} = [c1,...,cr—1,cp] and {H,} = [c1,...,cp—1+cL].
If {G,} is incomplete, then {Hy} is also incomplete.

The next two theorems are results that classify two families of PLRS’s as complete or
incomplete. They are shown in Section [3.1]

Theorem 1.14. The sequence generated by [1,0,...,0, N] is complete if and only if 1 < N <

k

[(k+2)(k+3)/4], where [-] is the ceiling function.
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Theorem 1.15. The sequence generated by [1,1,0,...,0, N] is complete if and only if 1 <
k

N < |(Fi+6 — k — 5)/4|, where F,, are the Fibonacci numbers with Fy = 1, Fy = 2, and |-| is

the floor function.

We have a partial extension of these theorems to when there are ¢ initial ones followed by
k zeroes in the collection of coefficients. For a proof, see [BHLLMT].

Theorem 1.16. Consider a PLRS generated by coefficients [1,...,1,0,...,0, N|, with g,k > 1.

g k
or g > k + |log , the sequence 1s complete if and only 1f 1 < N < — 1.
1) F k + [logy k1, th ' lete if and only if 1 < N < 2F+1 1
(2) For k < g < k + [logy k], the sequence is complete if and only if 1 < N < 2k+1
[k/297%].

In Section [3.2], we discuss finitary criteria for completeness, i.e., if there exists a position in
the sequence by which Brown’s criterion must fail, if it will ever fail. Based on experimental
data, we conjecture that such a bound does exist. We do show a weaker result, which is an
additional sufficient condition for completeness based on Brown’s gap.

Theorem 1.17. The PLRS {H,} generated by [c1,ca,...,cL] is complete if

Byn, > 0 forn<L (1.6)

Bgn, > 0 for L<n<2L-1. '

This paper is an introduction to the classification of PLRS’s by completeness and serves
as an introduction to the full results, which include an analysis of the principal root of the
recurrence relation’s characteristic function, in [BHLLMT].

2. MODIFYING SEQUENCES

A basic question to ask is how far we can tweak the coefficients used to generate a sequence,
yet preserve its completeness. The modifying process turns out to be well-behaved and heavily
dependent on the location of coefficients that are changed. Before we start looking into im-
plementing any changes to our sequences, we first need to understand the maximal complete
sequence.

2.1. The Maximal Complete Sequence. The maximal complete sequence is the sequence
that has terms that grow as quickly as possible while the sequence remains complete. For
example, if a sequence begins {1,¢, ...}, what can ¢ possibly be for the sequence to be complete?
The sequence is increasing as a result of the specific initial conditions we are using, until the
full recurrence relation takes over. So except in the degenerate case of H,11 = H,, i.e., the
collection of coefficients is just [1], the sequence is strictly increasing. On the other hand, if
t > 3, then there is no way to create a decomposition for 2 that uses sequence terms only once.
This means that the maximal complete sequence has ¢t = 2. Extending this idea, we establish
the following lemma.

Lemma 2.1. The complete sequence with the maximal possible terms is {a,} = {2""'}. In
other words, any sequence { H,} which fulfills H,, > 2"~1 for some n must be incomplete.

Proof. Tt is straightforward to see {a,} = {2"!} is generated by the PLRS H,, 1 = 2H,,. This
is complete by Brown’s criterion, since for any n,

n
2" = 1+) 27N
i=1
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Observe that by using a strict equality here with Brown’s criterion, we are “maximizing” the
complete sequence.

Now, let {b,} be an increasing sequence of positive integers, and suppose for some n, b, >
2"~ ie., at some index n, the sequence {b,} exceed that of the sequence {2"71}. Note that
there are precisely 2"~ — 1 non-empty subsets of {b1,...,b,_1}, and thus at most 2! — 1
positive integers which can be expressed as a sum of these values. Thus, as the set {1,2,...,b,—
1} has at least 277! elements, at least one of those elements cannot be written as a sum of
integers in {b1,...,b,_1}, and so the sequence is not complete. Hence, we conclude that {2771}
is the complete sequence such that each term is maximized. O

Now we can look at all complete sequences with only positive coefficients.

Proof of Theorem[1.10, Assuming completeness of the sequence, by the definition of a PLRS
and by Brown’s criterion, we have

aHp 1 +ceHp o+ - +c1Hi1+1 = H, <14+ H +Hy+---+Hp . (2.1)
Since¢; > 1for1 <i<L,c;=1for1<i< L. By the definition of a PLRS,
Hiw = elHp+cHp 1 +---+c Hy = Ho+Hp 1 +---+ Hy+cpHy. (2.2)

Which together with Brown’s criterion gives ¢ Hy < 1+ Hy = 2. And so ¢;, < 2, which
completes the forward direction of the proof.

Conversely, we know that the sequence [2] is complete by Lemma Thus, let us assume
that ¢y =+ =c¢_1 =1 and 1 < ¢;, < 2. We prove that H,, satisfies Brown’s criterion. We
can show this explicitly for 1 < n < L and by strong induction on n further on, where the
inductive hypothesis is applied to H,+1_1 to obtain

Hpio < Hpp1+ -+ Hypop + Hppr-p + (Hp—p + -+ Hi + 1), (2.3)

which completes the proof. O

A specific case of Theorem [1.10|is that a PLRS with coefficients [1,...,1,2] is complete. A
L—1

consequence of Lemma it that { H;} = {2¥~1} is an inclusive upper bound for any complete
sequence. A careful reader might note that these two results are related. Due to a PLRS’s
specific initial conditions, we can prove that this sequence {2¥~!} can be generated by multiple
collections of coefficients. The proof, by strong induction, can be found in [BHLLMT].

Corollary 2.2. A PLRS with coefficients [1,...,1,2] generates the sequence H, = 2"
L—-1

2.2. Modifications of Sequences of Arbitrary Coefficients. Modifying coefficients in
order to preserve completeness turns out to be a balancing act. Sometimes increasing a co-
efficient causes an incomplete sequence to become complete, while other times, increasing a
coefficient causes a complete sequence to become incomplete. For example, [1,0,0,0,0,0, 15]
is incomplete; increasing the second coefficient to 1, i.e., [1,1,0,0,0,0, 15] is complete. Further
increasing it to 2, i.e., [1,2,0,0,0,0,15] is again incomplete. To study how such modifica-
tions preserve completeness or incompleteness, we take advantage of Brown’s gap: a direct
consequence of Brown’s criterion is that { H,,} is complete if and only if By, > 0 for all n € N.

So, what happens if we append one more coefficient to [c1,...,cr]? It turns out that if our
sequence is already incomplete, appending any new coefficients will never make it complete.
This result is Theorem [1.11], which we now prove using Brown’s gap.
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Proof of Theorem [I.11. By Brown’s criterion, it is clear that {G,} is incomplete if and only if
there exists n such that Bg, < 0. We claim that for all m, By ,, < Bg,m,. If true, our lemma
is proven: suppose Bg, < 0 for some n, we would see By, < Bg, < 0, implying {H,} is
incomplete as well.

We proceed by induction. Clearly, By = Bg,, for 1 < k < L. Further, for k = L, we see

L L
Bgrv1—Bary1 = 1+ ZGi —Gry1— <1 + ZHz — HL+1> = Hpy1 —Gryi=1>0.
i—1 i=1

Now, let m > 2 be arbitrary, and suppose

By, 1+m—1 < Bg, L4m—1- (2.4)

We wish to show that By, 14+m < Bg, +m- Note that
By, 1+m — BH, Ltm-1 = 2Hpym—1 — Hrpym. (2.5)

Similarly,

Ba, 1+m — Ba, 1+m—1 = 2Grim—1 — Gr4m- (2.6)
It may be proven through induction that for all k > 2, Hy 1, —Gprix > 2 (Hp4r-1 — Grik—1)
(for more details, see Appendix B of [BHLLMT]). Applying it to equations (2.5 and ({2.6)),
we see that By, p+m — Ba, L+m-1 < Bag, 1+m — Ba, L+m—1. Summing this inequality to both
sides of inequality (2.4), we arrive at By 1+m < Bg,+m, as desired. O

Now, we investigate the behavior when we decrease the last coefficient for any complete
sequence. In Theorem [1.12] we find that decreasing the last coefficient for any complete
sequence preserves completeness.

Proof of Theorem[I.13, Given that {G,} is complete, suppose for the sake of contradiction
that there exists an incomplete { H,,}. Thus, let m be the least such that

m—1

Hy, > 1+ > H. (2.7)
=1

Simultaneously, as {Gy,} is complete, by Brown’s criterion,

m—1
Gm < 14+ ) G (2.8)
i=1
First, note that for all n < L, G,, = H,,, hence
m—1 m—1
Hy = G < 14 ) G =1+ ) H, (2.9)

i=1 i=1
which contradicts (2.7)). Now, suppose m > L. But then by substitution of G for H in the first
L terms we obtain

L m—1
1+Y Hi > Gn— Y G (2.10)
i=1 i=L+1
Moreover,
m—1 L m—1 m—1 m—1
Hy > 14> Hy =1+ Hi+ Y Hy > Gu— Y. Gi+ > H (2.11)
i=1 i=1 i=L+1 i=L+1 i=L+1
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and thus
m—1 m—1
Hyp— Y Hi > Gu— Y. Gi (2.12)
i=L+1 i=L+1

We claim that the opposite of (2.12)) is true, arguing by induction on m. For m = L + 1, we
obtain Gpy1 > Hp41 as kr < ¢r. Now, assume that

m—1 m—1
Gm— Y Gi > Hn,— Y H (2.13)
i=L+1 i=L+1

is true for a positive integer m. Using the inductive hypothesis, it then follows that

m m—1 m—1
Gmir— Y. Gi = Guir— Y Gi—Gpm > Guy1 —2Gm +Hy— > Hi.  (2.14)
i=L+1 i=L+1 =L+

It may be proven through induction that for all k € N, Hpypy1 — 2Hp 4 < Grags1 — 2G k.
Note

m—1 m—1 m
Gmi1—2Gm+Hp— > Hi > Hpy1—2Hpn+Hp— Y Hi = Hppi— > Hi, (2.15)
i=L+1 i=L+1 i=L+1
which does contradict (2.12)) for all m > L. Therefore, for all m € N, we have contradicted
(2.7). Hence, {H,} must be complete as well. O

The result above is crucial in our characterization of families of complete sequences in Section
[B} finding one complete sequence allows us to decrease the last coefficient to find more. Next,
we prove two lemmas used in the proof of Theorem [I.13]

Lemma 2.3. Let {G,} be the sequence defined by [c1,...,cL], and let {Hy,} be the sequence
defined by [c1,...,c—1+ 1, cp, — 1]. If {Gy} is incomplete, then {H,} must be incomplete as
well.

Proof. We claim that for all m, By, < Bgm,. This lemma is proven using similar reasoning
as for Theorem We proceed by induction. Clearly, By = Bgy for 1 < k < L — 1.
Further, for k = L, we see

L—1 L—1
Bar—Bur = 1+)» Gi—Gp— <1+ZHZ-—HL) = H, - Gp=1>0.
i=1 i=1
Now, let m > 0 be arbitrary, and suppose

BH7 L+m < BG’ L+m- (2.16)
We wish to show that By, r4+m+1 < Bg, L+m+1- Note that

Bi Limst — Bi. 1om = 2Hpm — Hpvmi1, (2.17)
and similarly,

Ba, L+m+1 — BG, L+m = 2GLim — GLym+1- (2.18)
Note that for all & > 0, Hryx11 — Grkt1 > 2(Hrpyr — Grix). Applying it to and

(2.18), we see By, n+m+1 — BH, L+m < Bag, L+m+1 — Ba, L+m. Summing this inequality to
both sides of inequality (2.16|), we conclude that By r4+m+1 < BG L+m+1, as desired. O

How many times can Lemma be applied? The answer is all the way up to [c1,...,c—1+
cr, — 1,1], as the last coefficient must remain positive to stay a PLRS.
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Lemma 2.4. Let {G,,} be the sequence defined by [c1,...,cr—1,1], and let {H,} be the sequence
defined by [c1,...,cp—1 + 1]. If {Gy} is incomplete, then {H,} must be incomplete as well.

Remark 2.5. Despite the similarities, Lemma is not implied by Lemma [2.3; both are

necessary for the proof of Theorem . Applying Lemma (cp, — 1) times proves that if
[c1,...,cn—1,cr] is incomplete, then [cy,...,cr—1 + ¢, — 1,1] is incomplete; we cannot apply
the lemma further while maintaining a positive final coefficient. Hence the case of Lemma
must be dealt with separately, in order to prove Theorem |1.15

Proof. The proof is similar to that of Lemma [2.3] We aim to show that By, < Bg,n for all
m. Clearly By = Bgy for 1 < k < L. Further, for k = L + 1, we see

L L1
Bgr+1 — Bup+1 = ZGz’ —Gry1 — (1 + Z Hp, — HL+1> = Hp41—Gr41 = ¢ > 0.
i=1 i=1
(2.19)
Now, let m > 0 be arbitrary, and suppose

Bur+m < BgLim- (2.20)

We wish to show that By 1+m+1 < Bg,r+m+1. Note that

Bu,r+m+1 — Bap+m = 2Hrym — Hppm1, (2.21)
and similarly

BG,L+m+1 - BG,Ler = 2C"YLer - GL+m+1- (222)
It may be proven through induction that for all £ > 0, Hryx+1 — Grik+1 > 2 (Hrykx — Gr+k)
(for more details, see Appendix B of the full paper). Applying it to equations ([2.21)) and (2.22)),
we see By r+m+1 — B, p+m < Ba,L+m+1 — Ba,1+m. Summing this inequality to both sides of
inequality (2.20), we conclude that By r4m+1 < Bg,L+m+1, as desired. O

Using these lemmas, we can now prove Theorem [1.13]

Proof of Theorem[I.13 We apply Lemma[2.3c;, — 1 times, to conclude that if [c1, ..., cr—1,cr]
is incomplete, then [c1,...,cp—1 + ¢r — 1,1] is incomplete. Finally, applying Lemma , we
achieve the desired result. (]

3. FAMILIES OF SEQUENCES

If we recall Theorem [1.12] it says that given a complete PLRS, decreasing the last coefficient
preserves its completeness. This raises a natural question: Given the first L — 1 coefficients
€1,€2,...,c5—1, what is the maximal N such that [c1,ca,...,cr—1, N] is complete? While we
are not able to answer this question in all generality, in this section, we begin exploring it.

3.1. Using 1’s and 0’s as Initial Coefficients.

Proof of Theorem[1.14} Suppose that {H,} is complete. By the definition of a PLRS, we can
generate the first £ + 2 terms of the sequence simply: H; = i for all 1 <7 < k + 2. For all
n >k + 1, we can use the recurrence relation

Hy,x1 = Hy,+NH, 1. (3.1)
In the case that n = k + 3,
Hyyy = Hpy3+ NHy = Hpys3+2N. (3.2)
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As {H,,} is complete by supposition, by Brown’s criterion,

Hypyy < Hppz+ Hpqo + -+ Hi 4+ 1 (3.3)
By (3.2)), we can replace Hy,4, so
Hpy34+2N < Hpys+ Hyppo+ -+ Hy + 1, (3.4)

and isolating IV,
N

IN

(Hiyo + Hypr + -+ Hi + 1] /2
— ((k+2)+(k+1)+---+1+1]/2
(k+2)(k+3) , 1

4 2

and as NV is an integer,

(k+

[~
|

[\

3

)(k +3) 1J

(k+2)(k+3)

1 -‘ (3.5)
Hence, N < [(k +2)(k + 3)/4].
We now prove that if N < [(k+ 2)(k+ 3)/4], then {H,} is complete. We first show
that if Npax = [(k+2)(k+ 3)/4], then {H,} is complete. Taking the recurrence relation
H,+1 = Hp+ NpaxHp,—i—1, and applying Brown’s criterion gives

Hn+1 = Hn"'Nmaan—k;—l

< Hp+ (Nmax —2)Hp—p1 + Hp—jp—1 + Hp—p—o+ -+ Hy + 1. (3.6)

We can prove by induction that (Npax — 2)Hp—p—1 < Hp—1+ -+ + Hy—g, so
Hy,.w. < Hy+H, 1+ ---+H, p+Hy k1 +Hy g o+--+H +1. (3.7)
Hence, by Brown’s criterion, the sequence {H,} is complete for Nyax. Lastly, by Theorem
for all positive N < [(k + 2)(k + 3)/4], the sequence is also complete. O

Once we have established a result such as Theorem it is often possible to allow small
additional adjustments to the coefficients while maintaining completeness. In the following
corollary, we show that for L > 6, if we switch one of the coefficients from 0 to 1 except for
the final zero, then the bound on NV to maintain completeness is at least as large.

Corollary 3.1. For L > 6, given that [1,0,...,0,N]| is complete, with N = [L(L + 1)/4],
then [1,¢a,...,cr—2,0,N] is complete where ¢; = 1 for onei € {2,...,L — 2}, and the rest are
0.

Proof. We begin with the recurrence relation for fixed a i € {2,...,L — 2},

Hy,y1 = Hy+Hpsv1+NH,_p41. (3.8)
Applying Brown’s criterion on the term H,,_r 41 gives
Hyyw < Hy+Hpini+(N—-2)H,- 11 +Hypp1+Hp—p+---+H + 1. (3.9)
We can prove by induction that Hy,—j+1 + (N — 2)H,—r+1 < Hp-1+ -+ Hp—42, sO
< Hy+Hp 14 +Hppyo+ Hypy1+Hpp+---+ H + 1. (3.10)
Hence, by Brown’s criterion, the sequence is complete for all L > 6. U
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Proof of Theorem[I.15. Suppose that {H,} is complete. Using the definition of a PLRS, the
first k + 3 terms of the sequence can be generated in the same way: H; = F;41 — 1 for all
1 < i < k+ 3, where F,, is the Fibonacci sequence. Proceeding in a manner similar to the
proof of Theorem [I.14] we see that

Hyyy = Hyys+ Hgoo+ NHy = Fiqo5+ N — 2,

Hyy5 = Hpyg+ Hypi3+ NHy = Fiy6 + 3N — 3,

Hiye = Hpys+ Hypya + NHy = Fiy7 +8N — 5. (3.11)
By applying Brown’s criterion,

Hyvo < Hpys+ Hpypg+---+Hi+1
k+3

= Fipo+3N =3+ Fos+ N -2+ Hi+1
=1

k+3
= Frpr +4AN =5+ (Fip— 1)+ 1. (3.12)
i=1
Next,
k+3
Fyy7+8N =5 < Fk+7+4N—5+Z(F¢+1 — 1)+ I,
=1
which implies
k+3 k+4
AN < > (Fipn 1)+ Fi=)Y F+(k+3)=Fps+ (k+5). (3.13)
=1 =1
Thus )
Frio—k—
N < ’“6#5, (3.14)
and since N is an integer,
Fyrg — k —
N < {’”641 . (3.15)

Next, we show that if N = |(Fi16 —k — 5)/4], then {H,} is complete. The initial conditions
can be found easily, and for the later terms we have

Hn+1 = Hn + Hn—l + NHn—k—Q
< Hy+(N—-2)H, o+ Hy po+Hyp g3+ ---+H +1

We can show by induction on n that (N —2)H,, o < H,_1+ -+ H,_p_1 foralln > k+3
and obtain

Hypyw < Hy+Hp i+ Hy o4+ Hy 1+ Hy g o+ Hy p3+---+H +1. (3.16)

Hence, by Brown’s criterion, this sequence is complete. Lastly, by Theorem[I.12] for all positive

N < |(Fyxy6 — k — 5)/4], the sequence is also complete. O
We want to find a more general result for [1,...,1,0,...,0,N], as seen in Figure (1| Inter-
—— T
g

estingly, we see that as we keep k fixed and increase g, the bound increases, and then stays
constant from some value of g onward. This observation motivates the following conjecture.
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Ficure 1. [1,...,1,0,...,0, N] with k£ and g varying, where each color repre-
H,_/Hk,_/
g

sents a fixed k.

Conjecture 3.2. If[1,...,1,0,...,0, N] is complete, then so is [1,...,1,0,...,0, NJ.
—— —— —— ——
g k g+1 k
We have made some progress towards this conjecture; in Theorem [1.16] we showed the
precise bound for N when g > k.

3.2. Finitary Criteria for Completeness. Brown’s criterion is an efficient way to determine
whether a sequence is complete, and as we have seen, many useful results on completeness of
PLRS’s can be derived from it by induction. However, an arbitrary infinite sequence of positive
integers must fulfill Brown’s criterion at every term to be considered complete; in order to use
it effectively, we wish to bound the number of terms that need to be checked. Thankfully, it
can easily be shown that the structure of PLRS’s allows us to limit the number of terms for
which we need to verify Brown’s criterion.

Lemma 3.3. For any positive integer L, there exists a constant My, such that any incomplete
PLRS generated by L coefficients [c1,. .., cr] must fail Brown’s criterion on or before the My, th
term.

Proof. Let {H,} be such a PLRS. Suppose for some index m, we have ¢, > 2™, so that
Hpi1 > c1Hy + -+ e Hy > 2™, Now, as at least one term of {H,} fulfills H, > 2"~ we
may set m’ as the lowest index for which H,,,, > 2™~ so that for all i < m’, H; < 2/=1. Then,
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we see that

/_1 /_1
m/—1 S i—1 S )
Hy > 2 > > 297N > Y Hy, (3.17)
j=1 i=1

i.e., the sequence fails Brown’s criterion at the m/th term.

Thus, if any coefficient ¢; exceeds 27, the sequence must fail Brown’s criterion at one of the
first L+ 1 terms. For fixed L, as only finitely many sets of coefficients [cy, ..., cz] fulfill ¢; < 2°
for all 4, we see that only finitely many incomplete sequences remain which can fail Brown’s
criterion past the L + 1st term. Among those, there must be a sequence which fails Brown’s
criterion last, which gives us the constant M7y,. O

In Lemma [3.5] we are able to show that this bound M, is at least 2L — 1, since 2L — 1 is
achieved by [1,...,1,0,4]. Moreover, through experimental data, no incomplete sequence has
been found to fail for the first time after term 2L — 1, so we conjecture that the bound My, is
exactly 2L — 1.

Conjecture 3.4 (The 2L — 1 Conjecture). The PLRS {H,} defined by [c1,...,cr] is complete
if By > 0 for alln < 2L — 1, i.e., Brown’s criterion holds for the first 2L — 1 terms.

Proving that [1,...,1,0,4] fails at term 2L — 1 and not before is a matter of computing the
terms, since we know exactly what the sequence is.

Lemma 3.5. [1,...,1,0,4], with k > 1 ones, is always incomplete. Moreover, it first fails
Brown’s criterion on the (2k + 3)rd term (equivalently, the (2L — 1)th term, where L is the
number of recurrence coefficients).

Proof. We can show that {H,} fails Brown’s criterion at term 2k + 3 by explicitly computing
the first terms of the sequence. The (2k 4 3)rd term is

Hopi3 = Hopqio+ -+ Hpyz +4Hp q; (3.18)
for 1 <j <k+ 1, we have H; = 2771 and additionally, Hg4o = 2*"1 — 1, s0

2Hp . = 28 > okl 1 — [y, (3.19)
and finally, Hpy1 = Hy + --- + Hj + 1. Putting everything together,

Hopys = Hopqo+ -+ Hpys +4Hp
= Hopio+ -+ Hpys +3Hp1 + Hp +- -+ Hi + 1
> Hopyo+ -+ Hpys+ Hivo + Hyy + He + -+ Hy + 1 (3.20)
Hence, [1,...,1,0,4] is incomplete and in particular, Brown’s criterion is failed by the (2k+3)rd
term.

Conversely, through a similar computation, we can show Brown’s criterion holds for the first
2k +2 terms. For 1 < j < k+1, we have H; = 2J=1 which are the first terms of the complete
sequence {2"}. On the other hand, when k+2 < j <2k+2, wehave 1 <j—k—1<k+1,so

Hj+1 = Hj +---+ ijk+1 + 4Hj7k71
= Hj+-+Hj_ 1 +2H; 1+ Hj_p1+ (Hj—p—o+---+H +1)
= Hj+ - +Hj_p1+Hj_y+Hj_p1+Hj o+ --+H +1 (3.21)

as 2H;_j_1 = 21 —k+1 — H;_j. So Brown’s criterion fails for the first time at term 2k +3. [
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We could also reframe this discussion as a question of when Brown’s gap By, falls below
0 for the first time. Our conjecture is then that if {H,} is an incomplete PLRS generated by
[c1,...,cp], then By, < 0 for some n < 2L — 1.

While this remains a conjecture, we show a weaker result, Theorem [I.I7] which has the
additional requirement that By, # 0 for all L < n < 2L — 1. That is to say, checking that
Bryn > 0forn < L and By, > 0 for L <n < 2L —1 is a sufficient criterion for completeness.

Proof of Theorem[I.17 For L = 1, an incomplete sequence [c] fails at the second term if and
only if ¢ > 2. So, we may assume L > 2. If ¢; > 2, then the sequence is incomplete as
H, = 3 and 2 has no representation as a sum of term H;. So we may assume ¢; = 1. We
show by induction on n that By, > 0 when n > L. Suppose Bp,, > 0 for L <n < m (with
m > 2L —1). Then

m
Brms1 = 1+ Z H; — Hinta
i—1

L m L L
= l—i-ZHH- Z H; 4 +ZCsz‘—j — Hm+ZCme+1—j
i=1 i=L+1 j=2 =2
m—1 L m
= (1 + Z Hi — Hm +HL> +ZCj < Z Hi_j — Hm+1_j>
i=1 =2 i=L+1
L L
= (Bum+HL) + Y ¢ | Bumprj—1— Y Hij
j=2 i=j+1
L L i-1
= Bgm + Z cj(Bams1—j — 1)+ Hp — Z Z c;Hi—j
=2 i=3 j=2
L L
= Bym+ ZCj(BH,m+1—j — 1)+ Hp — Z(Hz —H;_1—-1)
=2 i=3
L
= Bum + Z ¢i(Bams1—j — 1) + L. (3.22)
=2

The last line is positive since By ;41— —1 > 0 and By, L > 0. This completes the induction;
hence {H,,} is complete. O

The benefit of Conjecture [3.4]is that it would be a necessary and sufficient condition, while
Theorem provides a weaker sufficient condition. The condition that a PLRS not fail
Brown’s criterion in the first 2L — 1 terms is certainly necessary for it to be complete; the
conjecture is that this would also be sufficient for the sequence to be complete.

REFERENCES

[BBGILMT] Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Steven J. Miller, and
Philip Tosteson. The Average Gap Distribution for Generalized Zeckendorf Decompositions, Fi-
bonacci Quarterly 51 (2013), 13-27.

[BHLLMT]| Elzbieta Botdyriew, John Haviland, Phuc Lam, John Lentfer, Steven J. Miller, and Fernando
Trejos Suarez. Completeness of Positive Linear Recurrence Sequences, preprint (2020). http:
//arxiv.org/abs/2010.01655

SEPTEMBER 2021 13


http://arxiv.org/abs/2010.01655
http://arxiv.org/abs/2010.01655

[Br] J. L. Brown. Note on complete sequences of integers, American Mathematical Monthly 68 (1961),

no. 6, 557.

[Fr] Aviezri S. Fraenkel, Systems of numeration, American Mathematical Monthly 92 (1985), no. 2,
105-114.

[GT] P. J. Grabner and R. F. Tichy, Contributions to digit expansions with respect to linear recurrences,
J. Number Theory 36 (1990), no. 2, 160-169.

[GM] Daniele A. Gewurz and Francesca Merola, Numeration and enumeration, European Journal of
Combinatorics 32 (2012), no. 7, 1547-1556.

[HK] V. E. Hoggatt and C. King, problem E 1424, American Mathematical Monthly 67 (1960), no. 6,
593.

[MW] S. J. Miller and Y. Wang, From Fibonacci numbers to Central Limit Type Theorems, Journal of
Combinatorial Theory, Series A 119 (2012), no. 7, 1398-1413.

[Ze] E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou

de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liége 41 (1972), 179-182.
Email address: leboldyriew@colgate.edu

DEPARTMENT OF MATHEMATICS, COLGATE UNIVERSITY, HAMILTON, NY 13346

Email address: havijw@umich.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109

Email address: plam6@u.rochester.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NY 14627

Email address: |jlentfer@hmc.edu

DEPARTMENT OF MATHEMATICS, HARVEY MUDD COLLEGE, CLAREMONT, CA 91711

Email address: [sjml@williams.edu, Steven.Miller.MC.96Qaya.yale.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267
Email address: fernando.trejos@yale.edu

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEw HavEN, CT 06520

14 VOLUME, NUMBER


mailto:eboldyriew@colgate.edu
mailto:havijw@umich.edu
mailto:plam6@u.rochester.edu
mailto:jlentfer@hmc.edu
mailto:sjm1@williams.edu
Steven.Miller.MC.96@aya.yale.edu
mailto:fernando.trejos@yale.edu

	1. Introduction
	2. Modifying Sequences
	2.1. The Maximal Complete Sequence
	2.2. Modifications of Sequences of Arbitrary Coefficients

	3. Families of Sequences
	3.1. Using 1's and 0's as Initial Coefficients
	3.2. Finitary Criteria for Completeness

	References

