

Analysis on Fractals

From *Differential Equations on Fractals*,
by Robert Strichartz

Jack Haviland, Veronica Alfaro, and Safi Syed

Honors 135.004
Fractals: Their Beauty and Topology
Connor Davis

December 7, 2018

What's Ahead

1 Creating Fractals With Self-Similar Identities

- Self-Similar Identities
- Structure on Self-Similar Fractals

2 Measure

- Properties
- Measure as a Product

3 Integration

- Definitions
- Examples

4 Graph Energy

- Definition
- Properties

Self-Similar Identities

- Contraction maps, words, and composition
 - What does a contraction map do?
 - Composing functions
- The dyadic points as a dense set
 - What is density in math?
 - How do we know the dyadic points are dense?
 - Continuous functions with a dense set
- Constructing the Sierpinski Gasket with contraction maps
 - Extending ideas from the Interval
 - Start with 3 points instead

Structure on Self-Similar Fractals

- Cell structure on the Interval and Gasket
 - Start with entire shape instead of individual points
- Graphs and topological structure
 - “Neighbors” of points
 - What changes at the boundary points?

Measure

- Let K be a self-similar set and C be any cell in K . Then a *measure*, denoted μ , on K fulfills four properties:

- 1 Positivity:** $\mu(C) > 0$
- 2 Additivity:** if C is the union of some cells C_1, C_2, \dots, C_m and all C_j intersect only at boundary points, then

$$\mu(C) = \sum_{j=1}^m \mu(C_j)$$

- 3 Continuity:** as the size of $C \rightarrow 0$, $\mu(C) \rightarrow 0$.
In other words, the measure of a point is always 0.
- 4 Probability:** $\mu(K) = 1$.
For example, for all measures μ on the Interval, $\mu(I) = 1$, and likewise for the Gasket.

Measure

- The symbol μ_w means $\mu(F_w(K))$, the measure of the cell given the word w .
- If C is a cell given by $F_w(K)$, where $|w| = m$, then we can express the measure of C as a product:

$$\mu(C) = \prod_{j=0}^m \mu_{w_j}$$

Definitions for Integration

- When working with fractals like the Interval and the Gasket, we take integrals with respect to a measure.

Definition

$$\int_K f \, d\mu = \lim_{m \rightarrow \infty} \sum_{|w|=m} f(x_w) \mu_w$$

-
- Another definition can be used more easily to compute integrals:

Definition

$$\int_K f \, d\mu = \sum_i \mu_i \int_K f \circ F_i \, d\mu$$

Some Examples

- Functions take a point in K to another point in Euclidean space.
- If $f(x) = x$, then $\int_{SG} x \, d\mu = \sum_{i=0}^2 \mu_i \int_{SG} F_i \, d\mu$
- Extending to $f(x) = x^n$
 - The binomial theorem: $(a + b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i$
- Extending to any polynomial function
- Implementation in Python
 - bit.ly/si-integration
 - Accepts any starting points, measure, and polynomial function
- Extending to arbitrary functions with Taylor series

Defining Energy

Definition

For a finite, connected graph G and real-valued function u , the *graph energy* is defined by

$$E_G(u) = \sum_{x \sim y} (u(x) - u(y))^2$$

Properties of Graph Energy

- Polarization Identity
- **Markov Property:** if u is replaced by a minimum or maximum value and a constant, then energy reaches a limit and can no longer increase, because each term in the total sum is either staying constant or decreasing.
- The **1/5 - 2/5 Rule** states that the value at any inside point is a weighted average of the boundary point values. This works for the Interval as well as the Gasket.

